CMS Silicon Tracker Status and Plans

On behalf of the US Tracker Group

Joe Incandela
University of California Santa Barbara
US CMS Silicon Tracker Level 2 Manager
Overview

• Summer Pilot Production:
 – US tracker group found and helped to remedy a few residual issues
 • Transport damage (discussed at Lehman review in May)
 • Broken traces on hybrid cables
 • Common mode noise induced by leaky strips

• Component availability:
 – Significant flows began this summer but had to be stopped.
 • Hybrids halted in September, restarted October.
 • Sensor quality improving, deliveries well-underway, but some concerns remain

• US Production readiness
 – For Modules: Several innovations with productivity gains
 • UCSB now capable of ≥ 15 modules/day (require 9/day for TOB)
 • FNAL to be upgraded to match.
 – Rods: still on schedule to be ready for peak production in early 2004
Recent Changes and Additions

- Improving parts flow
 - US CMS will wirebond and thermal-cycle/pulse-test all Tracker Outer Barrel (TOB) and Tracker End Cap (TEC) hybrids (~11,000)
 - Relieves CERN bottleneck, improving hybrid flows
 - U. Rochester has been certified for ST sensor probing
 - Relieves potential bottlenecks in sensor deliveries to the US
- US group to be involved in Tracker End Cap (TEC) production:
 - Help to maintain quality and schedule of entire tracker project
 - Refined electronic test stands, developed uniform testing procedures, established cross-calibrations
 - Asked to review fabrication centers: consult and assist
 - To prepare for fabrication up to 2000 TEC modules
 - Backup Tracker End Cap production centers, provide expertise and critical review of overall TEC designs and procedures.
• 103 TOB modules produced in US
 – 14 April, 8 May, 17 June, 24 July, 40 August
 – Have produced only a handful since August due to various problems
• FNAL and UCSB have produced roughly equal numbers
 – Very high quality.
 • All are within mechanical specifications.
 • Production induced fault rate well under 1% and falling!
CMN Problem

- ~20%* modules have common mode noise (one chip)
 - Built with very early ST sensors
- Correlated w/increased bias current w.r.t. QTC probing
 - UCSB study ruled out hypothesis of mishandling in US
- High noise 1-4 channels ⇒ source of CMN for chip
 - No obvious associated damage in visual inspection
- Problem generally appears at the first module test
 - 1 module at FNAL developed problem during module long-term thermal cycle testing

*The sampling of sensors was slightly biased toward high-fault rate sensors. Almost all from old batches of type 2 sensors. Actual rate is around 10% for early sensors.
IV Test Results

<table>
<thead>
<tr>
<th>Probed Current @ UCSB (400 V) – QTC Measurement (400 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
</tr>
<tr>
<td>OB2 ('00-01)</td>
</tr>
<tr>
<td>OB1 ('00-01)</td>
</tr>
<tr>
<td>OB2 ('02)</td>
</tr>
</tbody>
</table>

- An increase greater than 5 μA can cause CMN
- **Much better results with newer OB2 sensors (2002)**
 - Factor of ~4 decrease in the rate of higher (and lower) current measurement at UCSB relative to old OB2 sensors
- **A batch of 2003 sensors are now en route**
CMN problem and ST sensors

• UCSB Study
 – IV curves did not change after module fabrication
 – 4 of 5 modules with a high current sensor had CMN problems
 – 19 of 20 modules with a low current sensors had no problems

• The Situation
 – Probing centers selecting ST sensors with low total current
 • 75% of all delivered sensors pass a cut of 1.5 µA
 – All selected sensors expected to make good modules but
 » Delivery inadequate for schedule
 » IV measurements alone saturate QA capacity
 – Steering Committee actively pursuing all options
 – Working with ST to improve quality to increase yield and increase production
 – Investigating other vendors
Hybrid Problem

- Cable brittle at connector solder pads
 - Differential data output lines break
- Reported by US on Sept. 4
 - Production was halted that week.
 - Protective stiffener designed and studied by US and vendor
 - Production re-started Oct. 20
- Current schedule looks good
 - 100 TIB hybrids delivered early Nov.
 - 500 hybrids per week as of late Nov.
- 4000 hybrids were in production when problem was discovered
 - 1000 throwaways and 3000 retrofits
- Barring new problems, sensors will replace hybrids as the limiting factor by January.
Overview of Production Lines

- Improvements, Readiness, Current Capacity
 - Hybrid Thermal Cycler/pulser
 - 1st stand completed, validated and online at UCSB
 - 2nd started, to be online at FNAL by early February
 - Gantry:
 - Stereo and 6 chip module production has been started
 - Problem with the gantry robot has been isolated and fixed
 - Can now do plate surveys off the gantry
 - Wirebonding
 - Full automation in effect
 - Module Testing
 - 90% of all necessary equipment installed and online
 - Full capacity LT test in Wien Cold Box
 - Rod Assembly, Test, LT test on schedule
- Near term Planning
 - A Sustained high throughput production run
 - Adding production capacity and manpower
Front End hybrids delivery

CERN Assembly, Bonding & Testing

Delivery from Vendor

Ready for modules

Accelerate hybrid delivery with US help: CERN - FNAL - UCSB = 40% - 30% - 30%

From CERN Annual Review Sep 03
Hybrid Thermal Cycler & Pulser

- Now fully commissioned
 - Substantial effort!

 Many thanks to CERN group

- 40 minutes to cycle 4 hybrids
 - Finds shorts/opens

- Capacity ≥ 28/d per stand
 - UCSB stand already online
 - FNAL stand will be online by Feb.
Assembly Plates & Tools

- **Plates work “right out of the box”**
 - 4 fully commissioned R-phi plates
 - 1 prototype R-phi assembly plate (could be used if needed)
 - 1 fully commissioned Stereo plate
 - 3 μm alignment for 1st 3 modules!

- **New pickup tools**
 - More reliable and accurate
Other Enhancements

• Gantry 3rd position problem fixed
 – Limited work area usage to 67%
• Surveying/DB
 – Recently automated full plate survey on OGP
 • Much faster than the gantry!
 • Macros compare the survey results to nominal values
 – Each position on each plate treated individually.
 – Allows module production on gantry all day.

Commercial high precision (< 1 μm) automated measuring machines (OGP) with pattern recognition at FNAL and UCSB
 – Provides independent survey of modules
Wirebonding

UCSB TOB 4 chip module

bond time 5 minutes:
Average of 1 channel needing to be re-bonded every 7 modules

- **K&S automatic wirebonders**
 - Currently 4 machines: 3 at FNAL and 1 at UCSB
 - FNAL: will likely need 1-2 for other projects much of the time
 - Need backup at UCSB
 - Plan to buy a used K&S 8060
 - smaller work area but otherwise identical
 - more common (available and cheaper).
Long Term and Rod Testing

- Complete set of electronics ready to test single rods
 - Test box provides dry, dark, and electrically isolated environment
 - Uses Rod LT chiller for cooling
- First rod in US fully assembled
 - Took approximately 2 hours!
- Noise under control!

Multi-rod Long Term test stands
- 1st Freezer moved from Rochester to Fermilab this past October.
- 2nd to be delivered to UCSB in December.

Module Long Term test stand (Wien Boxes)
- All functionalities demonstrated
 - Cold box fully instrumented
 - 10 module capacity
 - Conducted backplane pulse tests
- LT test ALL modules with full readout of temperatures and currents
Probing at Rochester (see talk by S. Korjenvski)

✓ **Hardware** is in place and operational.

✓ **Software** is working as well, test results are consistent with other testing centers

✓ **Qualified**
Capacity and Plans

- **Current capacity**
 - UCSB *current* capacity ≥ 15 modules per day
 - Over 12 requires shortening LT test to 12 hours
 - With expected improvements we can extend this
 - Requires 2nd wirebonder for backup
 - FNAL current capacity 8 modules per day
 - Limited by Wien box but MUX received
 - Should reach 12 per day soon
 - Will modify several setups and procedures to match UCSB

- **Goals:**
 - 15 per site in a normal work day
 - 21 per site in a slightly extended day

- *Near term: to produce ~100 modules in 1 week when hybrids arrive.*
Contingencies

- **Enhanced Capacity**
 - 30 modules/day ⇒ 6375 per year (with 15% downtime)
 - 42 modules/day ⇒ 8925 per year (with 15% downtime)

 TOB total is 5500

- **Several potential benefits**
 - Contingency for a compressed TOB production schedule.
 - Backup for TEC production lines.
TEC Module Schedule

TEC Modules

Updated Oct 30 2003
Additional Costs

- 465k$ + 250k$ contingency
 - Additional hybrid bonding and testing at FNAL
 - Enhancements to allow faster TOB production + some TEC Production.

<table>
<thead>
<tr>
<th></th>
<th>Cost (k$)</th>
<th>Contingency (k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrids equipment</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Hybrids Labor</td>
<td>130</td>
<td>40</td>
</tr>
<tr>
<td>Wirebonding Upgrades</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>Gantry Upgrades</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Module Labor</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Transport & Travel</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>465</td>
<td>260</td>
</tr>
</tbody>
</table>
Schedule and Outlook

• Schedule
 – CERN schedule shows most modules complete by end of 2004
 • CERN management is committed to this
 To leave as much time as possible for commissioning
 • Nevertheless, this is an aggressive schedule
 – Completion by end of US CMS FY05 is not yet at risk:
 • 20 months from January 2004.
 • Components must be available in this period!
 • US capacity adequate for much shorter production period.
Conclusions

• Many productivity improvements
 – Gantry 3rd position problem fixed
 – Automated surveys on OGP
 – Automated wirebonding programs

• Many Significant Achievements
 – First rod assembled and tested – good results
 – First stereo modules
 – Wien box fully instrumented with backplane pulsing
 – 4-hybrid test stand fully functional
 – First LT Rod stand delivered to FNAL
 – Rochester qualified for sensor probing

• We’ll increase capacity and production at low cost
 – Schedule contingency
 – Assist the overall tracker project
Additional Information

- Gantry Data – Sensor alignments
- Sources of faulty channels
- Common Mode Subtracted Noise
- UCSB Gantry Hardware Improvements
- Gantry 3RD Position Problem
- Modules Produced with Final Hybrids
- Vacuum Rod Assembly Tools
Gantry Data – Sensor alignments

UCSB results shown, FNAL results are equivalently good
Faulty Channel Sources

- Fault Sources (excluding cable breaks and CMN)
 - Hybrid-0.011%
 - Sensor (in DB)-0.33%
 - Sensor (not in DB)-0.26%
 - Either high noise and/or visible sensor damage
 - Bonding-0.037%
 - Mostly due to early pitch-adaptors (RMT).
 - No problems seen with production pitch-adaptors (PLANAR).
 - Testing-0.074%
 - Mostly due to an early problem which has been alleviated

- Total faults – 0.712%
Common Mode Subtracted Noise

For majority of modules with problems, the CM subtraction is imperfect.
7 of 12 have >2.0 ADC noise
3 of 12 have more than twice the usual noise
US Gantry Hardware Improvements

1. U motor mounting bracket replaced: Z and U axes orthogonal to base plate

2. New Support pads

3. Assembly plate underside modified

4. New Teflon topside
Gantry 3rd Position Problem

- Problems at all gantry centers in a specific region of gantry work area.
- Reduced CMS production capacity by 25-33% !!

- Russell Taylor (UCSB) pinpointed the problem and came up with a fix
 - Studies showed a strip in the gantry Y axis between the 3rd and 4th rows of the calibration file where counting errors occurred independent of calibration grid size (indicating a software or memory problem)
- We reported the problem to the OEM and they were able to update their software to remove the problem.
Modules Produced with Final Hybrids

- First Stereo TOB module made!
 - 3 TOB stereo module produced in total
 - All well within specs mechanically and all Grade A
 - Kapton circuit was missing a trace for bias. We made it by hand with Ag Epoxy.
 - One chip has dead pipeline column
 - Found to be dead prior to module production
- 2 TOB 6-chip R-Φ module produced (first module of this kind produced!!)
 - Both Grade A
- 1 TOB 4-chip R-Φ module with final hybrid built
 - Grade B due to known sensor faults
Vacuum Rod Assembly Tools
Wien Module LT Test

• All functionalities demonstrated
 – Cold box fully instrumented
 • 10 module capacity
 – Conducted first backplane pulse tests
• LT test ALL modules with full readout of temperatures and currents

Module 1025 Backplane test