"Stream Line" - path of a tiny particle in fluid.
Cut a hole in the bottom.

\[p_1 = p_2 \]

\[V_1 \neq V_2 \]

\[\rho g V_1 + \frac{1}{2} \rho V_1^2 = \rho g V_2 + \frac{1}{2} \rho V_2^2 \]

\[V_1^2 - V_2^2 = 2gh \]

Incompressible

\[A_1 V_1 = A_2 V_2 \]

\[V_2 = \left(\frac{A_1}{A_2} \right) V_1 \]

\[(1 - (\frac{A_1}{A_2})^2) V_1^2 = 2gh \]

\[V_1^2 = \frac{2gh}{1 - (\frac{A_1}{A_2})^2} \]

As \(A_1/A_2 \to 0 \),

\[V_1^2 \approx 2gh \]

(Torricelli's Principle) \(\to \) dense object would not reach.
Curved balls (ping pong)

From above:

\[\text{straight} \]

\[\text{"Halo"} \]

\[\text{curves} \]

\[\text{seems like point } a \]
\[\text{has higher velocity} \]

Key point: some air is dragged along with ball

Jump into rest frame of ball

Non spinning
Ball + air spinning

Add the two together (in the rest frame of ball)

[Diagram showing air flow and forces]

Roughening... big effect!
Fields of flow

Constant velocity

Imagine transverse area

\[v_1 A_1 = v_2 A_2 \quad \text{when } A_1 = A_2 \]

\[v_2 = v_1 \]

\[v_2 > v_1 \]
Spin a cup: \(\omega = \frac{V}{R} = \text{constant} \)

Down a drain:

CENTRAL FORCE

\[L = \text{constant}! \]
\[L = mvr, \quad v \propto \frac{1}{r} \]