Three ideas to help understand relativity:

1. Throw a ball at speed \(\frac{\vec{V}}{V_b} \) relative to you while running at speed \(\frac{\vec{V}}{V_b} \) (w/r to person) \(\vec{V}_b + \vec{V} \). Ball goes at \(\frac{\vec{V}}{V_b + V} \) rel to ground.

 ![Diagram of a person running and throwing a ball]

2. Call at speed of sound while running \(\vec{V}_s \). Sound perceived by runner moving at \(\vec{V}_s - \vec{V} \).

 ![Diagram of a person running and making a call]

3. Light (a) moves at \(c \) w/r to ground, (b) moves at \(c \) w/r to person.
SOUND

still air

moves with velocity \(\vec{V}_s \), horizontal \(|\vec{V}_s| = V_s \)

runs horizontal velocity \(\vec{V} \), right to left \(|\vec{V}| = V \)

Speed of sound perceived by runner:

A: \(V_s + V \)

B: \(V_s \)

C: \(V_s - V \)
\[v_e \]

\[|v_e| = c = 3 \times 10^8 \text{ m/s} \]

relative to ground

Speed of light perceived by runner:

\[\text{A) } c + v \]

\[\text{B) } c \]

\[\text{C) } c - v \]
How this is resolved

Time Dilation

"Clock" \[\text{Mirror} \]

Flash \[\text{"Ding"} \]

\[\Delta t_0 = \frac{2L_0}{c} \]

AT REST, \[c \Delta t_0 = 2L_0 \]

time between "Dings"

\[L^2 = L_0^2 + \left(\frac{u \Delta t}{2} \right)^2 \] \text{Pythag}

\[\Delta t = \frac{2L}{c} = \frac{2}{c} \sqrt{L_0^2 + \left(\frac{u \Delta t}{2} \right)^2} \] \text{SOLVE!}
\[
\left(\frac{c \Delta t}{2} \right)^2 = L_0^2 + \left(\frac{u \Delta t}{2} \right)^2
\]

\[
\frac{1}{4} \left[(c \Delta t)^2 - (u \Delta t)^2 \right] = \left(\frac{c \Delta t_0}{2} \right)^2
\]

\[
(\Delta t)^2 (c^2 - u^2) = c^2 (\Delta t_0)^2
\]

\[
\Delta t = \frac{c \Delta t_0}{\sqrt{c^2 - u^2}} = \frac{\Delta t_0}{\sqrt{1 - (\frac{u}{c})^2}}
\]

\[
\beta = \frac{u}{c} \quad \gamma = \frac{1}{\sqrt{1 - (\frac{u}{c})^2}} = \frac{1}{\sqrt{1 - \beta^2}} > 1
\]

\[
\Delta t = \gamma \Delta t_0
\]

Longer time interval in the rest frame

\(\mu \) particles: \(\Delta t \approx 2.2 \times 10^{-6} \text{ s} \) \((c \Delta t = 2200 \text{ ft} \))

but: they travel 30,000 ft from