Here is a review of some (but not all) of the topics you should know for the midterm. These are things I think are important to know. I haven’t seen the test, so there are probably some things on it that I don’t cover here. Hopefully this covers most of them.

- **Vector Spaces**
 Review properties on Shankar page 2
 Closure under multiplication: If $|u\rangle$ and $|v\rangle \in V$, then $a|u\rangle + b|v\rangle \in V$ for any a, b. Note when $b = 0$ this takes care of scalar multiplication also.
 Inverses, identity, etc.

- **Linear independence**
 A set of vectors $\{|v_i\rangle\}$ is linearly independent if $a|v_1\rangle + b|v_2\rangle + \cdots = 0$ has only one solution: $a = b = \cdots = 0$.

- **Gram-Schmidt procedure**
 If you have a set of linearly independent vectors $|I\rangle, |II\rangle, \ldots$ you can always construct an orthonormal set of vectors as follows:

 $|1\rangle = \frac{|I\rangle}{\sqrt{\langle I|I \rangle}}$
 $|2\rangle = \frac{|II\rangle - |1\rangle\langle 1|II \rangle}{\text{normalization constant}}$
 $|3\rangle = \frac{|III\rangle - |1\rangle\langle 1|III \rangle - |2\rangle\langle 2|III \rangle}{\text{normalization constant}}$

 The normalization constants are chosen so that $\langle 2|2 \rangle = 1, \langle 3|3 \rangle = 1, \ldots$.

- **Basis**
 A basis of a vector space V is a set of vectors $\{|v_i\rangle\}$.
Any vector $|u\rangle \in V$ can be written in terms of these vectors: $|u\rangle = a|v_1\rangle + b|v_2\rangle + \ldots$ always has a, b, \ldots so that the equation is satisfied.

- **Orthonormal (ON) basis**
 An ON basis is one for which $\langle v_i|v_j\rangle = \delta_{ij}$.

- **Decomposition of unity**
 If \{|$v_i\rangle$\} is an ON basis, then $\sum_i |v_i\rangle\langle v_i| = \mathbb{I}$.

- **Linear Operators**
 Linear operators have $\Omega(a|u\rangle + b|v\rangle) = a\Omega|u\rangle + b\Omega|v\rangle$.

- **Operator Inverses**
 The inverse of the product of operators is given by the inverses of those operators in reverse order: $(\Omega\Lambda)^{-1} = \Lambda^{-1}\Omega^{-1}$.

- **Commutators**
 The commutator of two matrices is written $[A, B] \equiv AB - BA$. The anticommutator is written $\{A, B\} = [A, B]^+ = AB + BA$.

- **Hermitian, Unitary, etc.**
 An operator Λ is Hermitian if $\Lambda = \Lambda^\dagger$. It is unitary if $\Lambda^{-1} = \Lambda^\dagger$ or equivalently $\Lambda\Lambda^\dagger = \mathbb{I}$.
 An operator is anti-Hermitian if $\Lambda = -\Lambda^\dagger$. An operator is anti-unitary if, among other things, $\Lambda(a|u\rangle) = a^*\Lambda|u\rangle$. Anti-Hermitian and anti-unitary operators won’t show up often (if at all) in this class—in fact, I can think of only one anti-unitary operator that comes up in physics.
• Projection operators
Defining equation: $\tilde{P}^2 = \tilde{P}$. $Tr \tilde{P}$ = dimensionality of subspace onto which \tilde{P} projects. Example: $\mathbb{I}^2 = \mathbb{I}$. The trace of an operator is the sum of the diagonal elements of its matrix representation. In N dimensions, the identity operator is a $N \times N$ matrix with N 1’s on the diagonal, so $Tr \mathbb{I} = N$.

• Matrix elements
Inserting a decomposition of unity twice,
$$\Omega_{ij} = \langle i | \Omega | j \rangle$$
$$\Omega = \sum_{ij} |i\rangle \Omega_{ij} \langle j|$$

For a vector, the components are given by
$$v_i = \langle i | v \rangle$$
$$|v\rangle = \sum_i |i\rangle \langle i | v \rangle = \sum_i v_i |i\rangle$$

• Change of basis
A change of basis from one ON basis (the “unprimed” basis $\{|i\rangle\}$) to another basis (the “primed” basis $\{|i'\rangle\}$) transforms operators and vectors as follows (inserting decompositions of \mathbb{I}),
$$\langle i'| A | j' \rangle = \sum_{ij} \langle i'|i \rangle \langle i | A | j \rangle \langle j | j' \rangle$$
$$\langle i'|v\rangle = \sum_i \langle i'|i \rangle \langle i | v \rangle$$
Note that $U_{jj'}$ is a matrix for which the j^{th} basis vector goes in j^{th} column.

- **Eigenvectors, eigenvalues**
 If
 \[A|v\rangle = a|v\rangle \quad |v\rangle \neq 0 \]
 then $|v\rangle$ is an eigenvector of A with eigenvalue a.

- **Determining eigenvalues**
 Solve the equation
 \[\det(A - aI) = 0 \]
 where A is a matrix representation of A. The left hand side ends up being a polynomial called the “characteristic polynomial” of the operator, and the equation is called the “characteristic equation” of the operator. For an N by N matrix A, the polynomial is an N^{th}-order polynomial, and so the equation has N solutions. They need not be distinct – one or more of the eigenvalues can be the same number. If that happens, that eigenvalue is called “degenerate.”

- **Eigenvectors**
 Once you have the eigenvalues, solve
 \[A \begin{bmatrix} \alpha \\ \beta \\ \vdots \end{bmatrix} = a \begin{bmatrix} \alpha \\ \beta \\ \vdots \end{bmatrix} \]
 for each eigenvalue to get the associated eigenvector (α, β, \ldots). If the eigenvalue is nondegenerate, you’ll have N unknowns α, β, \ldots and $N - 1$ equations
one-parameter family of eigenvectors. Impose normalization condition $\alpha^*\alpha + \beta^*\beta \ldots = 1$ to fix the final free parameter.

If the eigenvalue is m-fold degenerate (m of the eigenvalues are the same) then you get N free parameters and $N-(1+m)$ equations, and thus an m-parameter family of eigenvectors. Example: suppose you get the eigenvector

$$|v\rangle = \begin{bmatrix} \alpha \\ \beta \\ -\beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

You can split it up into two or more “basis” vectors that “span the degenerate subspace”–in the above example, any eigenvector of that eigenvalue can be written as a linear combination of the two vectors with combination coefficients α and β.

- **Diagonalization**

 If $\{|i\rangle\}$ are the normalized eigenvectors of A, you can represent A in that “eigenbasis”, and if the eigenvectors are normalized, the new matrix representation will be a diagonal matrix with the eigenvalues as the diagonal elements. As discussed for changes of basis, U is constructed

 $$U = \begin{bmatrix} |1\rangle & |2\rangle & \ldots \end{bmatrix}$$

 If the eigenvectors are not normalized, you’ll still get
a diagonal matrix, but the diagonal elements will not be the eigenvalues of \(A \).

- Simultaneous Diagonalization
 Suppose we have a matrix \(B \) that commutes with \(A \):
 \[[A, B] = 0. \]
 Then the ON basis that diagonalizes \(A \) is the same ON basis that diagonalizes \(B \)—the eigenvectors of \(B \) are the same as the (orthonormal) eigenvectors of \(A \), but with different eigenvalues \((B|i⟩ = b|i⟩) \).
 They diagonalize \(B \) into a matrix with \(B \)'s eigenvalues on the diagonal.

 One of the reasons one cares about this is illustrated as follows. Suppose you have a 1000 by 1000 matrix \(B \). The characteristic equation is a 1000th-order polynomial. For 2nd order polynomials, the quadratic equation can solve the characteristic equation; for 3rd and 4th order polynomials we also have equations. But for higher-order polynomials there is no general way of finding the roots, and so finding the eigenvalues would be very hard. But, if you can find an \(A \) that commutes with \(B \), you can find the eigenvalues and eigenvectors of \(A \) instead of solving the characteristic equation for \(B \). If you can find an \(A \) for which diagonalization is very easy, then all you have to do is matrix multiplication to diagonalize \(B \) and find its eigenvalues. It saves a lot of work.

- Delta functions
 Suppose you have an interval \(\gamma \) (e.g. \(\gamma = (-\infty, \infty) \)).
Then the defining equation of a delta function is

$$\int_{\gamma} f(x)\delta(x)dx = f(0)$$

if $0 \in \gamma$ and the result is zero if zero is not in the interval. Also, integrating by substituting $u = g(x)$,

$$\int_{\gamma} f(x)\delta(g(x))dx = \int_{\gamma} f(x(u))\delta(u)\frac{du}{dg(x(u))} = \sum_i \frac{f(x_i)}{|g'(x_i)|}$$

where x_i is a solution of $g(x_i) = 0$ and $x_i \in \gamma$. Why the absolute value sign is required is a homework problem for Monday. Finally, integrating by parts,

$$\int_{\gamma} f(x)\frac{d\delta(x)}{dx}dx = f(x)\delta(x)\bigg|_{\partial\gamma} - \int_{\gamma} \frac{df}{dx}\delta(x)dx$$

where $\partial\gamma$ is the boundary of the interval γ (e.g. if $\gamma = (-1, 1)$, $f(x)\delta(x)|_{\partial\gamma} = f(x)\delta(x)|_1^{-1}$). Since $\delta(x)$ is zero everywhere except $x = 0$, the first term is zero as long as $0 \in \gamma$ (and not on the boundary) and so

$$\int_{\gamma} f(x)\frac{d\delta(x)}{dx}dx = - \int_{\gamma} \frac{df}{dx}\delta(x)dx$$