Physics 115A Midterm

Harry Nelson

Monday, Feb. 10, 2003

Closed Book; no calculators. For full credit, show your work and make your reasoning clear to the graders.

The ‘boldface’ notation below is used for operators; thus, Ω is an abstract operator. In class we put a ‘twiddle’ under the Ω to denote that it was an operator. The symbol \doteq means ‘is represented by’.

The quadratic formula for the roots to the equation $ax^2 + bx + c = 0$ is:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

1. (25 pts) Two kets have unit length: $|V_1\rangle$, and $|V_2\rangle$, so $\langle V_1|V_1\rangle = \langle V_2|V_2\rangle = 1$; these two kets are never equal, that is, $|V_1\rangle \neq |V_2\rangle$. The two projection operators are $P_1 = |V_1\rangle\langle V_1|$ and $P_2 = |V_2\rangle\langle V_2|$.

 (a) Suppose $|V_1\rangle$ and $|V_2\rangle$ are represented in an orthonormal basis by:

 $$|V_1\rangle \doteq \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |V_2\rangle \doteq \begin{bmatrix} -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \end{bmatrix}.$$

 i. Find the matrices that represent P_1 and P_2.

 ii. Use the matrix representations to find the matrix that represents the commutator $[P_1, P_2]$.

 (b) In general, what conditions on $|V_1\rangle$ and $|V_2\rangle$ will guarantee that the commutator $[P_1, P_2] = 0$?

2. (20 pts) Consider the linear operator Ω which operates on abstract vectors in a space of dimension 2, and which is represented in one particular basis by the matrix:

 $$\Omega \doteq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}.$$

 (a) Is Ω Hermitian?

 (b) Is Ω unitary?

 (c) What are the eigenvalues of Ω?

 (d) What are the representations of the normalized eigenvectors of Ω?

Over...
3. (40 pts) The linear operators Ω and Λ operate on abstract vectors in a space of dimension 3, and in one particular orthonormal basis they are represented by the matrix:

$$
\Omega = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}, \quad \Lambda = \begin{bmatrix}
\frac{2}{3}b & b & \frac{1}{3}b \\
\frac{1}{3}b & b & b \\
\frac{1}{3}b & b & \frac{2}{3}b
\end{bmatrix}
$$

where b is a non-zero real number.

(a) Do Ω and Λ commute?

(b) Is Ω unitary?

(c) One eigenket of Ω, $|\omega_3\rangle$, has an obvious representation in this basis, namely:

$$
|\omega_3\rangle = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix};
$$

what is the eigenvalue ω_3 that corresponds to this eigenket?

(d) Find the other two eigenvalues of Ω; call ω_1 the smaller of the two, and ω_2 the larger of the two.

(e) Find the unitary matrix that transforms the representation of Ω given above into the diagonal form:

$$
\Omega \doteq \begin{bmatrix}
\omega_1 & 0 & 0 \\
0 & \omega_2 & 0 \\
0 & 0 & \omega_3
\end{bmatrix}
$$

(f) Apply the same unitary transformation to Λ.

(g) What are the eigenvalues of Λ?

4. (15 pts) Numerically evaluate the integral:

$$
\int_{-\infty}^{\infty} \delta(4x - 2) \left[\frac{1}{2}x^2 - 1 \right] dx
$$