A first look at decays in flight in CSA07 samples

F. Rebassoo, J. Richman, J.-R. Vlimant
Next Slides

- no L1/HLT filters
- QCD_Pt_30_50 CSA07 samples
Associate L3 Tk-Tracks By Hits

~50% of hltL3Muons:L2Seeded (tracker tracks) are made of π/K hits!

#hltL3Muon:L2Seeded = 1570
no major pb with associator

reconstructed by L3(tracker) : 1544.00

- 33.03 [%] association quality of reco::Track to $\pi^+/-$
- 16.71 [%] association quality of reco::Track to K
- 47.22 [%] association quality of reco::Track to $\mu^+/-$
- 3.04 [%] association quality of reco::Track to other

remember
47.22% of 1544 = 729
L3 Tk-tracks Associated (by hits) to μ

~20% coming from π/K decays in μ

reconstructed by L3(tracker)

~70% coming from B/D decays in μ

muon p_T^sim: 729.00

- 15.23 [%] p_T^sim of muon coming from $\pi^+/-$
- 4.53 [%] p_T^sim of muon coming from K
- 39.37 [%] p_T^sim of muon coming from D
- 32.78 [%] p_T^sim of muon coming from B
- 3.43 [%] p_T^sim of muon coming from Λ_d
- 0.14 [%] p_T^sim of muon coming from J/Ψ
- 1.51 [%] p_T^sim of muon coming from $\tau^+/-$
- 3.02 [%] p_T^sim of muon coming from other

hltL3Muons:L2Seeded are not refitted in 16X: cannot plot the track p_T
Associate L3 Glb-Fit by $\Delta R<0.1$ to μ

540 not associated to μ, open space in stack

p_T of μ from π/K decays are not too much overestimated

reconstructed by L3

reconstructed by L3 : 1030.00

$p_T^{\text{muon reco}} : 1570.00$

- 25.34 [%] p_T^{reco} of muon coming from $\pi^{+/0}$
- 13.98 [%] p_T^{reco} of muon coming from K
- 30.49 [%] p_T^{reco} of muon coming from D
- 24.27 [%] p_T^{reco} of muon coming from B
- 2.43 [%] p_T^{reco} of muon coming from Λ_b
- 0.10 [%] p_T^{reco} of muon coming from J/Ψ
- 1.17 [%] p_T^{reco} of muon coming from $\tau^{+/0}$
- 2.23 [%] p_T^{reco} of muon coming from other
Summary and Deductions

Decay vertex outside of the tracker
Is there a muon at all? μ?
Punch through?

~800 associated by hits to π/K

π/K

By deduction ~500

Decay vertex inside of the tracker

π/K

π/K and others

729 associated by hits to μ

By deduction ~300

1030 associated by ΔR<0.1 to μ

Vlimant, Rebassoo

muon HLT, decays in flight, CSA07
Conclusions: part 1

- A lot (50%) of L3 muons are made from π/K tracks
- Implication on d0 cut
 - short lived hadrons: pick up the muon track, d0 of muon (wide)
 - long lived hadrons: pick up the hadron track, d0 of hadron track... (narrow)
- Tend to remove B/D but not π/K

![Graph showing muon d0 reco distribution with various categories and percentages.]

- muon d_0^{reco} : 1013.00
- 25.37 [%] d_0^{reco} of muon coming from $\pi^+/-$
- 13.43 [%] d_0^{reco} of muon coming from K
- 30.60 [%] d_0^{reco} of muon coming from D
- 24.68 [%] d_0^{reco} of muon coming from B
- 2.47 [%] d_0^{reco} of muon coming from Λ_b
- 0.10 [%] d_0^{reco} of muon coming from J/Ψ
- 1.18 [%] d_0^{reco} of muon coming from $\tau^{+/-}$
- 2.17 [%] d_0^{reco} of muon coming from other
Remember

Open space in stack histograms mostly π/K:

- Punch through
- Hadron “late” decays
Next Slides

- No filter Cut
- Plot L2 pT and L3 pT: need to plot 90% pT threshold
- Combine CSA07 samples according to Xsec/NbEvts
 - QCD_Pt_0_15
 - QCD_Pt_15_20
 - QCD_Pt_20_30
 - QCD_Pt_30_50
 - QCD_Pt_50_80: job aborted, not in plots
 - QCD_Pt_80_120
 - QCD_Pt_120_170: job aborted, not in plots

\[\kappa = \frac{\sigma [mb]}{NbEvt [M]} \text{ for } L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \]
Leading L2 Muon pT

There's not much μ from π/K above threshold

There are quite some punch throughs (open space in the stack)
There's not much \(\mu \) from \(\pi/K \) above threshold

- There are quite some punch throughs (open space in the stack)
Leading L3 Muon pT

There's not much μ from π/K above threshold
Less punch throughs (open space in the stack)

- 21.63 [%] leading p_T^{reco} of muon coming from $\pi^+/-$ weighted
- 26.77 [%] leading p_T^{reco} of muon coming from K weighted
- 8.69 [%] leading p_T^{reco} of muon coming from D weighted
- 35.83 [%] leading p_T^{reco} of muon coming from B weighted
- 3.96 [%] leading p_T^{reco} of muon coming from Λ_b weighted
- 1.95 [%] leading p_T^{reco} of muon coming from J/ψ weighted
- 0.09 [%] leading p_T^{reco} of muon coming from τ^+/τ^- weighted
- 1.09 [%] leading p_T^{reco} of muon coming from other weighted

16 GeV

Vlimant, Rebassoo

muon HLT, decays in flight, CSA07

2/12/08
Cumulative: Leading L3 Muon pT

There's not much μ from π/K above threshold
Less punch throughs (open space in the stack)
Conclusions: part 2

- Large rate of π/K at L2
- Killing J/Psi ...
- Rate of π/K reduced at L3
 - from pT, not d0 cut