

Track Reconstruction in the CMS Tracker

Frank-Peter Schilling (CERN/PH) D-CMS Meeting Hamburg, 21/02/2006

- Introduction
- Baseline algorithm: Kalman Filter
- Advanced algorithms
- Road Search
- Recent developments
- Alignment

Outline

- Baseline algorithm (Combinatorial Kalman Filter)
 - Algorithm description
 - Performance
 - Special cases (regional/partial tracking (HLT))
- Advanced algorithms: Adaptive Filters
 - Deterministic Annealing Filter, Multi-track Filter
 - Gaussian Sum Filter
- Alternative approach: RoadSearch
- Recent Developments

21/02/2006

- Pixel-less tracking
- Inclusion of hit pairs in overlap regions
- (Tracking for cosmics)
- (Reconstruction of V0's)
- A few words on track-based Alignment

Introduction

- High hit resolution and granularity
- A few (10+3 barrel layers), but precise (10-50 μ m) measurements
- 4T solenoidal magnetic field: Pt>0.6 GeV to reach outer layer
- Large track multiplicity (pileup!), most hits from low p junk
- A lot of material: multiple scattering!

For details on HW, see talk of K.Klein

21/02/2006

F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

3) Impact parameter resolution

Material Budget

Radiation lengths

- Multiple scattering
- Bremsstrahlung for electrons

- Hadronic interactions
- Kills tracks!

21/02/2006

5(8) layer crossing probability: muons

21/02/2006

5(8) layer crossing probability: pions

Pions suffer substantial losses

Must consider material effects during pattern recognition!

No sense to track outside-in (for primary tracks):

Up to ~20% don't reach outside!

21/02/2006

Baseline Algorithm

Standard algorithm in CMS: Combinatorial Kalman Filter

- **Equivalent to global least-squares minimization**
 - optimal estimator if model is linear and random noise is gaussian
 - For non-linear models / non-gaussian noise, optimal linear estimator
- Local: one track reconstructed at a time
- **Recursive: parameters updated with each successive hit**
- Energy loss / multiple scattering can be taken into account

Modular Building blocks for track reconstruction:

- **Starting point**
 - **Seed generation**
- **Pattern recognition**
 - Trajectory building
- **Reduction of remaining combinatorics**
 - **Trajectory cleaning**
- **Parameter estimation**

21/02/2006

Track fitting and smoothing2006F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

Seed generation

- Defines the starting point for pattern recognition
 - Seeds should constrain all 5 track parameters:
 - reasonable seach region
 - sufficiently close to true values: linear regime
- Needs to be fast and efficient
- Baseline seeding:
 - innermost layers: Pixel
 - High track density compensated by high granularity
- Fast hit pair finding: start with primary hit in outermost Px layer
 - Can be restricted to region of interest

21/02/2006

Seed generation (cont.)

Minimal pT tracks

- Complemented by 2nd hit in other layers and vertex constraint $(\Delta z=30cm, \Delta R=1mm) \rightarrow 2 2d$ hits + vertex
- Fast geometrical search
- Hit finding efficiency ~100%
- Time small (~10%) w.r.t full track reco

 Alternative seedings (not discussed here): Outside-in (e.g. photon conversions) External seeds (ECAL or Muon + Vertex)

Trajectory Building

- Based on Kalman filter
 - Simultaneous trajectory extension and hit selection
- Propagation from layer to layer, accounting for energy loss and multiple scattering (requires efficient layer navigation)
- Propagation of track to next layer, search for compatible hits
 - New trajectories constructed with updated parameters + errors for each compatible hit
 - In addition one furher trajectory without hit to account for inefficiencies
 - All trajectories propagated to next layer
- Procedure repeated until outermost layer is reached
- To avoid bias, all trajectories propagated in parallel
- Parameters
 - Max. number of candidates retained per step (ranked in χ^2)
 - Number of missing hits

Example: Pattern recognition in the Barrel

- Most seeds are composed of a hit pair in Px layers 1+2
- ^{1 st} step: Propagation to Px layer 3
 - Trajectory not yet well defined; uncertainties ~500 (80) μ m in r ϕ (rz)
 - Few fakes, mostly 1 (+1 invalid) compatible hits, thanks to Pixel granularity

21/02/2006

Pattern recognition in the Barrel (cont.)

- 2nd step: Propagation to TIB layer 1
 - Uncertainties of predicted state increases (800 / 400 μ m) due to large extrapolation distance (~13 cm) and small lever arm of initial trajectories (~6 cm)
 - More compatible hits due to bigger occupancy in strip detector

 From TIB layer 2 on, uncertainties reduced (trajectories ~well defined); many trajectories with spurious hits discarded

21/02/2006

Pattern recognition in the barrel (cont.)

• Fraction of trajectory candidates with at least one spurious hit

Pattern recognition in endcap

- Navigation more complex than in barrel
 - E.g. for high η tracks leaving PX disk 2, all 3 TID disks and 3 of TEC disks could be compatible: many trajectory candidates
 - Large propagation distances possible: more spurious hits
- Once in TEC, situation improves

Trajectory cleaning

- Resolve ambiguities to avoid double counting of tracks
- Ambiguities may arise from
 - One seed leading to >1 trajectory candidates
 - A given track is reconstructed starting from different seeds
- Based on fraction of shared hits f:
 - f= N-shared / min(N1,N2)
 - If f>0.5 for a given pair of tracks, the one with the smaller number of hits is discarded (if N1=N2, the one with the bigger χ^2)
- Cleaning applied twice:
 - On all tracks resulting from a single seed
 - On all tracks from all seeds

Track fitting and smoothing

- For each trajectory, building stage results in collection of hits and estimate of track parameters, but
 - full information only available at last hit
 - estimate can be biased by constraints applied at seeding stage
 - Therefore, a re-fit is performed, implemented as a combination of a Kalman filter and smoother
- Filter: is Initialized at innermost hit with seeding estimate
 - Covariance matrix scaled by large factor to remove seeding bias
- Iterative processing of hit list:
 - Re-evaluation of hit position estimate
 - Update of track parameters and covariance matrix
 - Trajectory propagation, modification of parameters and cov. matrix according to estimates for energy loss and multiple scattering
- Smoothing: 2nd filter outside-in
 - Smoothed states: weighted mean of forward and backward fits

21/02/2006

Performance: Efficiency for Muons

- Two definitions of efficiency used:
 - Algorithmic efficiency: efficiency of pattern recognition (defined wrt sim. Tracks which are reconstructable: no of PX/strip hits, pt, etc)
 - Global efficiency: efficiency for all tracks with pt>pt-cut and production vertex inside beam-pipe (includes acceptance, hit eff.etc)
- Cuts: Pt>0.9 GeV. at least 8 hits. at most one missing hit

21/02/2006

Performance: Efficiency for Pions

• Algorithmic efficiency reduced at low pt due to elastic scattering • Lower global efficiency due to hadronic interactions in tracker material (tracks don't reach outside)

21/02/2006

21/02/2006

Performance: Resolutions (muons)

- 10µ resolution in d0 at 100 GeV: pixel hit resolution
- Degrading at lower pt due to multiple scattering

21/02/2006

F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

Longit. impact parameter z0

 z0 resoluton improving from η=0 up to ~0.5 due to widening of Px clusters , improving resolution

20

Resolutions (cont.)

Polar angle: cot(θ)

Resolutions (cont.)

Transverse momentum

Pt resolution ~1-2% in barrel

21/02/2006

- At 100 GeV, tracker material accounts for 20-30% of Pt resolution
- At lower Pt, dominated by multiple scattering
- Small Pt bias in endcap due to B-field inhomogenities not (yet) accounted for

Special modes

- What has been shown so far represents the current CMS default
- This is what you will get (also on DST) if you request RecQuery("CombinatorialTrackFinder")
- Documentation: CMS-Note-2006/041, CMS-Note-2006/026, PTDR1

Special modes:

- limited reconstruction to save CPU (HLT):
- Regional reconstruction
 - Region of interest (ROI) derived from L1 trigger
 - Seeding and pattern recognition limited to this region
- Partial reconstruction
 - Don't need full resolution e.g. for isolation
 - Stop trajectory building when errors are small enough

Partial reconstruction (HLT)

•

Pt resolution

Impact parameter resolution

Reasonable precision already with 5 hits

(see DAQ TDR)

21/02/2006

F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

24

Advanced algorithms

- Advantages of default reconstruction
 - Based on simple, well-known algorithms
 - Efficient and robust
 - Few parameters
 - Works (with retuning) even for Heavy Ion collisions
- Drawbacks:
 - Limit on number of candidates in trajectory building is compromise between speed and risk to loose right track
 - No differentiation between noise and hits from other tracks
 - Hard hit assignment sub-optimal in dense environments
- Advanced algorithms: Adaptive filters
 - Avoid hit assignment errors at high track density (1+2)
 - Consider non-gaussian tails (e.g. Bremsstrahlung) (3)
 - 1. Deterministic Annealing Filter (DAF)
 - 2. Multi-track Filter (MTF)
 - 3. Gaussian Sum Filter (GSF)

Adaptive Filters: DAF and MTF

- Dense track environments e.g. in b- or tau-jets:
 - Hit degradation due to contamination from nearby tracks
 - Large hit multiplicity in search window: wrong hit assignment
- Try soft hit assignment during pattern recognition
- Deterministic Annealing Filter (DAF): CMS-IN-2003/043
 - Iterative Kalman Filter
 - Competition between hits on same surface to belong to track
 - Soft Assignment probabilities 0...1
 - Fitter and smoother iterated until convergence
 - To avoid local minima use annealing
- Multi-track filter (MTF): CMS-IN-2003/042
 - Extension to concurrent multi track fit
 - Competition between tracks and hits (assignment prob. matrix)
 - Each hit can belong to each of several tracks

21/02/2006

Deterministic Annealing Filter (DAF)

- B-Jets in the barrel, Pt=200 GeV
- Transverse impact parameter resolution

DAF: tails are reduced

21/02/2006

F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

27

Gaussian Sum Filter (GSF)

- Linear least square estimators (==KF) only optimal in linear systems with Gaussian measurement errors and process noise
- GSF used for electron reconstruction in CMS
 - Bremsstrahlung highly non-gaussian

CMS-Note-2005/001

- Basic idea:
 - Non-linear generalization of KF
 - Describe non-gaussian probability density functions (pdf's)by mixture of multivariate Gaussian pdf's
 - Main component: Core of distributions
 - Tails: One or more additional Gaussians
 - Weighted sum of several Kalman Filters, run in parallel
 - At each step, convolution of state vector mixture with energy loss mixture ⇒ exponential rise of number of components
 - Way out: collapsing of components which are "close"

21/02/2006

F.-P. Schilling (CERN/PH) - Track Reconstruction in CMS

DARTS

Update or convolution with material effects (M components)

Gaussian Sum Filter (cont.)

- Application of GSF to electron reconstruction
- Bethe-Heitler model:
 - f(z): pdf of electron energy loss
 - t: path length (units of rad. length)
 - z: remaining energy fraction

$$f(z) = \frac{[-\ln z]^{c-1}}{\Gamma(c)}$$
; $c = t/\ln 2$

 Fit parameters of Gaussian mixture to known energy loss distribution

GSF electron reconstruction (cont.)

q/p pulls (both at TiP surface):

- 6 component mixture for energy loss
- Number of components limited to 12 in fit

Clear improvement in momentum resolution (but similar to KF at high Pt)

21/02/2006

RoadSearch Algorithm

New development pursued by the USCMS group

- Complementary to Kalman Filter
- Robust tracks, in particular at start-up
- Always good to have alternative

outer Rings for RoadSeeds

- Basics of RoadSearch algorithm:
 - Tracker subdivided in "Rings" in phi at $\overline{given}^2(\mathbf{r},\mathbf{z})$
 - Seeds built from hits in predefined inner and outer seed ring combination (RoadSeed) passing $\Delta \phi$ cut
 - RoadSeed: all lin. Extrapolations of inner/outer seed ring combinations compatible with beam spot
 - Collect hits (cloud) in window around trajectory in road
 - Clean hit collection; final track fit

21/02/2006

RoadSearch (cont.)

Efficiency for single muons with Pt=100 GeV

- Better RS efficiency in fwd region (no PX requirement)
- Meanwhile compensated by KF Pixelless seeding (see later)

21/02/2006

RoadSearch (cont.)

sample	mean numb	er of tracks	time per event		
	CTF	RS	CTF	RS	
single muon	J	I	0.09	0.06	
$h \to ZZ \to ee \mu \mu$	33.7	29.8	3.7	7.6	
$W \to \mu v + pileup$	43.3	40.7	14.3	23.9	
b jets (120≤pT≤170GeV)	60.0	56.2	17.3	52.0	

Work in progress

21/02/2006

Other recent developments

In addition the the new RoadSearch approach, extensions an improvements of existing KF tracking are ongoing:

- Tracking with overlaps
- Tracking without Pixels
- Cosmics tracking (see talk of M.Stoye)
- (V0 tracking)

 ... and of course porting of the track reconstruction to the new software framework CMSSW

Tracking with overlaps

- Standard CTF uses only one hit per layer, even if tracks crosses overlap region between two modules, leaving two hits
- Tracking with overlaps potentially interesting e.g. for alignment!

- ~0.5...1 more hits per track found
- Performance similar (efficiency, resolution)

21/02/2006

Pixel-less tracking (seeding)

- Standard tracking uses seeds from Pixel detector
- At the CMS start-up, there will be no pixel!
- Implement alternative seeding, using the innermost layers of strip tracker

- SiliconStrip hits have position error bigger than silicon ones.
- The innermost SiStrip layer is farther from the beam line than the pixel one.

In comparison with a pixel seed generator, a NoPixel one gives seeds with bigger uncertainties on their parameters

\Rightarrow Bigger number of trajectory candidates

21/02/2006

Pixel-less seeding (cont.)

In order to reduce the number of seeds generated and the number of calls to the trajectory builder:

Optimization of the layers set used during seed

The best arrangment (between seed efficiency and track reconstruction speed) resulted in this layers combination:

- TIB1 and TIB2 layers
- 2 innermost rings of TID1 + complete TID2 + 2 innermost rings of TID3
- 2 innermost rings of TEC2 and TEC3

21/02/2006

Pixel-less seeding: performance

Higher efficiency in fwd region mixed seeding

Impact parameter resolution degraded

coming!

5000 events have been simulated without pixel "dead" material. There are no apparent improvements in the resolution.

21/02/2006

A few words on Alignment

CMS tracker consists of ~16.000 indiv. Modules

- Knowledge of position and orientation should be comparable or better than intrinsic resolution
- Laser alignment: only for of larger structures in TIB / TOB / TEC
 - See talk by M. Thomas
- Determination of ~100k alignment parameters to 10 μ necessary
- Only possible with track-based alignment!
- Three algorithms presently studied in CMS:
- Kalman filter (Vienna, Aachen), CMS-Note-2006/022
 - See talk by M. Weber
- Millepede (Hamburg), CMS-Note-2006/011
 - See talk by M. Stoye
- HIP (Helsinki, CERN), CMS-Note-2006/018

Summary of work documented in PTDR Vol. 1, section 6.6

Status: Software

- Simulation of Misalignment
 - Development of two "Misalignment scenarios" (short- and long-term)
 - Documented in CMS-Note-2006/008
 - Used for many PTDR physics studies, see also CMS-Note-2006/029
- Common Software Framework for track-based Alignment
 - Presently implemented in ORCA
 - Documented in CMS-IN-2005/051
 - Used for interfacing alignment algorithms to CMS software
- Software devlopments relevant for alignment
 - Track refit at DST level (~25 ev/sec), if only relevant tracks are refitted, e.g. μ from W \rightarrow $\mu\nu$)
 - miniDST format for alignment (retain *only* relevant tracks): improvement in performance (~75 ev/sec) and diskspace (~1/100) precursor of alignment HLT stream?!

Only these make large scale alignment possible with reasonable turnaround!

HIP Algorithm (Helsinki, CERN)

- Linearized χ^2 minimisation
- Derivatives of impact point on sensor w.r.t. alignment parameters
- No correlations between sensors, no large matrices
- Implemented for indiv. sensors as well as for composite objects (rods, ladders etc.)

Impact of misalignment

- Misalignment implemented at reconstruction level (ORCA) by moving/rotating modules/layers etc
- Can be studied even at DST level using track refitter
- Two misalignment scenarios developed for PTDR studies:
- "first data" scenario
 - Situation at LHC start-up (first few 100 pb-1)
 - Construction information, LAS, pixel aligned with tracks
- "long term" scenario
 - After first few fb-1 have been taken
 - Tracker aligned at the sensor level to ~20 μm

	Pixel		Silicon Strip				
			Inner	Outer	Inner		CMS-Note-2006/008
	Barrel	Endcap	Barrel	Barrel	Disk	Endcap	
First Data Taking Scenario							CMS-Note-2006/02
Modules	13	2.5	200	100	100	50	
Ladders/Rods/Rings/Petals	5	5	200	100	300	100	
Long Term Scenario							5
Modules	13	2.5	20	10	10	5	-177
Ladders/Rods/Rings/Petals	5	5	20	10	30	10	22 120 - 4

21/02/2006

Impact of misalignment

 Single muons with Pt=100 GeV (typical scale for LHC physics, resolutions not dominated by multiple scattering)

- Inefficiency in barrel, if alignment unc. not added to meas. error
- Worse in TID region (larger initial uncertainty from mounting)
- Pt resolution worse by factor ~5 for short-term scenario

21/02/2006

21/02/2006

Impact of Misalignment

Transverse and longit. Impact parameter resolution

d0 resolution ~9, 35, 20 μm (ideal, short term, long term)

• Note: Pixel detector assumed aligned even in short term scenario

Impact of Misalignment

No b-tagging performance with currently assumed assembly precision for pixel

Fast Pixel alignment mandatory (also to provide reference for strip alignment)!

Conclusions

- CMS has (had?) a modular / oo oriented track reconstruction
 - Details of detector geometry hidden from reconstruction
 - Modular structure allows easy exchange of components
- Efficient baseline track reconstruction based on Kalman filter
- Advanced algorithms available (building upon baseline KF)
 - Soft assignment algorithms
 - Gaussian sum filter
- Recent (ongoing) developments
 - Overlaps
 - Pixel-less seeding
 - Cosmics
 - Tracking of V0's
 - RoadSearch
 - Porting to CMSSW!
- Alignment cruical for physics performance of tracker!

Additional manpower in tracking/alignment welcome!!

21/02/2006