Track reconstruction
with the pixel and the full
CMS tracker

Teddy Todorov
IReS, Strasbourg / CERN
Time05
5/10/2005
The CMS tracker

- All-silicon tracker
 - ~3 pixel hits per high momentum track
 - ~10 strip hits, 4 double-sided and 6 single-sided
The pixel detector

- Three barrel layers, at 4, 7, and 10 cm radius
- Two endcap disks
 - Rotated sensors to improve resolution via Lorentz drift charge sharing
- Pixel size 100x150 μ, 66 million channels
- Eta coverage up to ~2.5
Pixel triplets

- Geometrical search for triplets of pixel hits
- Constraints:
 - compatible with interaction region (cylindrical)
 - not the beam spot!
 - size defined by physics analysis
 - typical size is 1-2 mm in radius, ±15 cm in Z
 - Transverse momentum above some cut
 - Global case: eta within tracker acceptance
 - Regional case: eta and phi cuts
- Parametrized multiple scattering, no energy loss
- Highly optimized implementation
The hits from layers are accessed more than once. Since the φ constraint is more predictive than r/z the hits are kept in φ-sorted cache.

- using the analytical prediction for φ the STL binary search is used to find hits compatible in phi. No direction constraints are used.
- Each hit is tested against r/z. rz constraint from region is used.

Key points:
- caching,
- optimal sorting
- fast searching
Pixel triplet efficiency

- Blue line for tracks with three pixel hits
- Red line for all tracks
 - difference due to geometrical inefficiencies but excluding readout inefficiencies

\[\Delta R \times \Delta \phi = 0.2 \times 0.2 \]
Pixel triplet purity

- ratio of pixel triplets from tracks to all pixel triplets
 - just an example, depends on physics channel and region definition
CPU time for pixel triplet finding

- CPU time, on a 2.4 Ghz Xeon CPU
Pixel triplets summary

• Pixel triplets can be reconstructed
 - efficiently (~90%)
 - with good purity (~10% ghosts)
 - very quickly (in a fraction of the HLT time limit)
• The total number of pixel triplets per event is small
 - a few hundred even at high luminosity
• The pixel triplets are ideal seeds for Kalman filter pattern recognition
 - all 5 track parameters well constrained
• Pixel triplets can even be used as tracks
 - in High Level Trigger
The last 10%

- The last 10% of the tracks take more than 90% of the CPU time!
- Require use of “2 out of 3” pixel layers

[Image of pixel layers]
Hit pair combinatorics

- Reconstructing the pixel triplet tracks does not reduce the combinatorial problem for the remaining tracks
 - most of the hits do not come from reconstructible tracks
 - only about 3% of the hit pairs can be removed
At high luminosity, the number of hit pairs is 20 – 30 thousand
- about 100 times more than the number of triplets
Hit pair reconstruction

- Very efficient
 - more than 99%, “good enough” for all purposes
- Very low purity
 - of the order of 1% (99% ghosts)
- CPU time similar to triplet reconstruction
- Require additional assumptions (compatibility with interaction region) to constrain all 5 track parameters
 - less precise seed parameters than triplets
Cleaning seeds with primary vertex

• If the primary vertex is known, the hit pairs not compatible with it can be eliminated
 – for reconstruction of the “trigger” event
 – in some cases reconstruction of tracks from pile-up events may also be required
 • e.g. energy flow
 – Large reduction in number of pairs
 • by a factor of 6 at low lumi, more than a factor of 10 at high lumi

• Primary vertex may be defined by trigger muon, electron, di-muon, etc.

• Primary vertex can be reconstructed before track reconstruction
 – from pixel triplets!
Pixel primary vertex finding

- Pixel triplets cluster (in Z impact parameter) around the primary vertex
- A simple clustering or histogramming method in 1D is enough to find the vertices
- Identifying the trigger primary vertex is not always easy
 - depends on the type of the trigger event

![Graph showing vertex finding distribution](image-url)
pixel PV finding efficiency

- Histo Closest PV
- Divi Closest PV
- Histo Tagged PV
- Divi Tagged PV
Track reconstruction

- Seed generation is only the first stage
- Each seed is followed in a combinatorial Kalman filter
 - “trajectory building”
 - No hit locking, all seeds tracked independently
- Mutually exclusive tracks (sharing large fraction of hits) must be “cleaned”
 - based on normalized χ^2, with a penalty for missed hits
- A final refit with smoothing removes potential bias from the seed
Combinatorial growth

• Most tricky problem: if not limited, leads to exponential increase of number of candidate trajectories
• All candidate trajectories (from a single seed) are grown in parallel, one layer at a time
• after the inclusion of measurements from each layer the total number of candidates is limited to a small value
 - e.g. 5
 • this value is within 1 or 2 per mils of the asymptotic efficiency
 - This parameter allows tuning of CPU versus efficiency
 • for HLT tracking the limit is 1
Example of hit combinatorics

Figure 14: Number of compatible hits found on TIB layer 1 for each trajectory candidate when leaving Barrel Pixel layer 3 for 100 GeV b jets without pile up.

Figure 21: Number of compatible hits for each trajectory candidate when leaving the Forward Pixel disk 2 (100 GeV b jets without pile up).
Track reconstruction efficiency

• Efficiency is limited by hadronic interactions
 - between 10% and 20% of the pions (depending on momentum and eta) disappear before leaving 8 hits!
Efficiency in jets

- The efficiency in dense environment (jet core) is close (within few percent) to the single particle efficiency
 - so close that the differences are not yet quantified
 - Not very surprising: a combinatorial search should find the correct combination of hits
 - among other combinations
 - if the hits are not affected
Hit contamination

- For 100 GeV Pt b-jets with high lumi pile-up
 - High Pt (above 1 GeV) contamination in yellow
 - Low Pt contamination in blue
Some resolutions

Transverse impact parameter

\[\eta \sigma (d_{0}) (\mu_{m}) = \frac{\mu}{\mu_{T}} = \frac{100}{G_{eV}/c} \]

Transverse momentum

\[\eta \sigma (p_{T}) / p_{T} = \frac{100}{G_{eV}/c} \]
Dense environment?

- If a 100 GeV jet core at high luminosity is not a dense environment for the CMS tracker, what is?
 - a 200 GeV jet is significantly denser
 - hardest case studied for proton-proton: three-prong τ decays
- Is the combinatorial Kalman filter sufficient?
- Implemented and studied
 - Deterministic annealing filter
 - soft assignment of hits to a single track
 - Multi track filter
 - soft assignment of hits to several tracks simultaneously
Adaptive filters: the DAF and the MTF

Reconstruction of π tracks from the decay of high-p_T τ: $H^0 \rightarrow \tau^+\tau^-$, $m(H^0) = 500$ GeV/c^2

- KF: Kalman Filter alone
- DAF: DAF with seed from KF
- KF+MTF: MTF tracks, seeded with KF tracks
- DAF+MTF: MTF tracks, seeded with DAF tracks
Adaptive filters: the DAF and the MTF

Transverse IP resolution

Transverse IP pull

Little improvement with the MTF over the DAF
Conclusions

• The CMS tracker allows for very robust tracking up to the LHC design luminosity.
 - Caveat: this is a Monte Carlo study with ideally aligned and calibrated tracker
 - effects of misalignment presented tomorrow (N. de Filippis)

• The pixel detector has extensive capabilities
 - for stand-alone reconstruction
 - for seeding the track reconstruction

• Advanced track algorithms (DAF...) bring measurable improvements in very dense environments