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The CMS tracker

- All-silicon tracker
- ~3 pixel hits per high momentum track
- ~10 strip hits, 4 double-sided and 6 single-sided

Diameter 2.4m

Length 5.4m
Volume 24 4m°>

Running temperature -1 ﬂﬂC
Dry atmosphere for 10 years

II Silicon strip detector

‘ Pixel detector



The pixel detector

Three barrel layers, at 4, 7.and 10 cm radius

two endcap disks

- rotated sensors to improve resolution via Lorentz drift charge
sharing

pixel size 100x150 [, 66 million channels
eta coverage up to ~2.5



Pixel triplets

- Geometrical search for triplets of pixel hits

- (Constraints:

- compatible with interaction region (cylindrical)
- not the beam spot!
- size defined by physics analysis
- typical size is 1- 2 mm in radius, =15 cmin Z
- Transverse momentum above some cut
- Global case: eta within tracker acceptance
- Regional case: eta and phi cuts

- Parametrized multiple scattering, no energy loss
- Highly optimized implementation



The hits from layers are accessed
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Pixel triplet efficiency

- Blue line for tracks with three pixel hits

- Red line for all tracks

- difference due to geometrical inefficiencies but excluding
readout inefficiencies
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Pixel triplet purity
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- Just an example, depends on physics channel and region
definition




CPU time for pixel triplet finding

- CPU time, on a 2.4 Ghz Xeon CPU
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Pixel triplets summary

Pixel triplets can be reconstructed

- efficiently (~90%)

- with good purity (~10% ghosts)

- very quickly (in a fraction of the HLT time limit)
The total number of pixel triplets per event is small
- a few hundred even at high luminosity
The pixel triplets are ideal seeds for Kalman filter
pattern recognition

- all 5 track parameters well constrained

Pixel triplets can even be used as tracks

- in High Level Trigger



The last 10%

- The last 10% of the tracks take more than 90% of the

CPU time!
Require use of “2 out of 3” pixel layers
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Hit pair combinatorics

- Reconstructing the pixel triplet tracks does not reduce
the combinatorial problem for the remaining tracks

- most of the hits do not come from reconstructible tracks
- only about 3% of the hit pairs can be removed



At high luminosity, the number of hit pairs is 20 — 30
thousand

- about 100 times more than the number of triplets
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Hit pair reconstruction

Very efficient

- more than 99%, “good enough” for all purposes
Very low purity

- of the order of 1% (99% ghosts)
CPU time similar to triplet reconstruction

Require additional assumptions (compatibility with
Interaction region) to constrain all 5 track parameters

- less precise seed parameters than triplets



Cleaning seeds with primary vertex

If the primary vertex is known, the hit pairs not
compatible with it can be eliminated
- for reconstruction of the “trigger” event

- In some cases reconstruction of tracks from pile-up events
may also be required

- e.g. energy flow
- Large reduction in number of pairs
- by a factor of 6 at low lumi, more than a factor of 10 at high lumi

Primary vertex may be defined by trigger muon,
electron, di-muon, etc.

Primary vertex can-be reconstructed before track
reconstruction

- from pixel triplets!



Pixel primary vertex finding

Pixel triplets cluster (in Z impact parameter) around the
primary vertex

- A simple clustering or histograming method in 1D is
enough to find the vertices

|dentifying the trigger primary vertex is not always easy
- depends on the type of the trigger event
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pixel PV finding efficiency
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Track reconstruction

Seed generation is only the first stage

Each seed is followed in a combinatorial Kalman filter
- “trajectory building”

- No hit locking, all seeds tracked independently

Mutually exclusive tracks (sharing large fraction of hits)
must be “cleaned”

- based on normalized x2, with a penalty for missed hits

- A final refit with smoothing removes potential bias from

the seed



Combinatorial growth

- Most tricky problem: if not limited, leads to exponential
increase of number of candidate trajectories

- All candidate trajectories (from a single seed) are
grown in parallel, one layer at a time

- after the inclusion of measurements from each layer
the total number of candidates is limited to a small
value

- 4.5

- this value is within 1 or 2 per mils of the asymptotic efficiency
- This parameter allows tuning of CPU versus efficiency

- for HLT tracking the limit is 1



Example of hit combinatorics
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Figure 14: Number of compatible hits found on
I'lB layver 1 for each trajectory candidate when
leaving Barrel Pixel layer 3 for 100 Gel b jets
without pile up.

Figure 21: Number of compatible hits for each
trajectory candidate when leaving the Forward
Pixel disk 2 (100 GeV b jets without pile up).




Track reconstruction efficiency

- Efficiency is limited by hadronic interactions

- between 10% and 20% of the pions (depending on momentum
and eta) disappear before leaving 8 hits!
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Efficiency in jets

- The efficiency in dense environment (jet core) is close
(within few percent) to the single particle efficiency
- so close that the differences are not yet quantified

- Not very surprising: a combinatorial search should find the
correct combination of hits

- among other combinations
- if the hits are not affected



Hit contamination
- For 100 GeV Pt b-jets with high lumi pile-up

- High Pt (above 1 GeV) contamination in yellow

- Low Pt contamination in blue
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Transverse impact parameter
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Dense environment?

If a 100 GeV jet core at high luminosity is not a dense
environment for the CMS tracker, what is?

- a 200 GeV jet is significantly denser
- hardest case studied for proton-proton: three-prong t decays

Is the combinatorial Kalman filter sufficient?

Implemented and studied

- Deterministic annealing filter
- soft assignment of hits to a single track
- Multi track filter
- soft'assignment of hits to several tracks simultaneously



Adaptive filters: the DAF and the
MTF
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Transverse IP resolution
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Little improvement with the MTF over the DAF



Conclusions

The CMS tracker allows for very robust tracking up to
the LHC design luminosity.

- Caveat: this is-a Monte Carlo study with ideally aligned and
calibrated tracker

- effects of misalignment presented tomorrow (N. de Filippis)
The pixel detector has extensive capabillities

- for stand-alone reconstruction

- for seeding the track reconstruction

Advanced track algorithms (DAF...) bring measurable
Improvements in very dense environments



