Track reconstruction with the pixel and the full CMS tracker

Teddy Todorov IReS, Strasbourg / CERN Time05 5/10/2005

The CMS tracker

- All-silicon tracker
 - ~3 pixel hits per high momentum track
 - ~10 strip hits, 4 double-sided and 6 single-sided

The pixel detector

- Three barrel layers, at 4, 7.and 10 cm radius
- two endcap disks
 - rotated sensors to improve resolution via Lorentz drift charge sharing
- pixel size 100x150 µ, 66 million channels
- eta coverage up to ~2.5

Pixel triplets

- Geometrical search for triplets of pixel hits
- Constraints:
 - compatible with interaction region (cylindrical)
 - not the beam spot!
 - size defined by physics analysis
 - typical size is 1-2 mm in radius, ±15 cm in Z
 - Transverse momentum above some cut
 - Global case: eta within tracker acceptance
 - Regional case: eta and phi cuts
- Parametrized multiple scattering, no energy loss
- Highly optimized implementation

The hits from layers are accessed more than once. Since the φ constraint is more predictive than r/zthe hits are kept in φ -sorted cache.

- using the analytical prediction for φ the STL binary search is used to find hits compatible in phi. No direction constraints are used.
- Each hit is tested against r/z.
 rz constraint from region is used.

Key points:

- caching,
- optimal sorting
- fast searching

Pixel triplet efficiency

- Blue line for tracks with three pixel hits
- Red line for all tracks
 - difference due to geometrical inefficiencies but excluding readout inefficiencies

Pixel triplet purity

ratio of pixel triplets from tracks to all pixel triplets
 just an example, depends on physics channel and region definition

CPU time for pixel triplet finding

CPU time, on a 2.4 Ghz Xeon CPU

Pixel triplets summary

- Pixel triplets can be reconstructed
 - efficiently (~90%)
 - with good purity (~10% ghosts)
 - very quickly (in a fraction of the HLT time limit)
 - The total number of pixel triplets per event is small
 - a few hundred even at high luminosity
- The pixel triplets are ideal seeds for Kalman filter pattern recognition
 - all 5 track parameters well constrained
- Pixel triplets can even be used as tracks
 - in High Level Trigger

The last 10%

- The last 10% of the tracks take more than 90% of the CPU time!
- Require use of "2 out of 3" pixel layers

Hit pair combinatorics

 Reconstructing the pixel triplet tracks does not reduce the combinatorial problem for the remaining tracks
 most of the hits do not come from reconstructible tracks
 only about 3% of the hit pairs can be removed

- At high luminosity, the number of hit pairs is 20 30 thousand
 - about 100 times more than the number of triplets

Hit pair reconstruction

- Very efficient
 - more than 99%, "good enough" for all purposes
- Very low purity
 - of the order of 1% (99% ghosts)
- CPU time similar to triplet reconstruction
- Require additional assumptions (compatibility with interaction region) to constrain all 5 track parameters
 - less precise seed parameters than triplets

Cleaning seeds with primary vertex

- If the primary vertex is known, the hit pairs not compatible with it can be eliminated
 - for reconstruction of the "trigger" event
 - in some cases reconstruction of tracks from pile-up events may also be required
 - e.g. energy flow
 - Large reduction in number of pairs
 - by a factor of 6 at low lumi, more than a factor of 10 at high lumi
- Primary vertex may be defined by trigger muon, electron, di-muon, etc.
- Primary vertex can be reconstructed before track reconstruction
 - from pixel triplets!

Pixel primary vertex finding

- Pixel triplets cluster (in Z impact parameter) around the primary vertex
 - A simple clustering or histograming method in 1D is enough to find the vertices
- Identifying the trigger primary vertex is not always easy - depends on the type of the trigger event

pixel PV finding efficiency

Track reconstruction

- Seed generation is only the first stage
- Each seed is followed in a combinatorial Kalman filter - "trajectory building"
 - No hit locking, all seeds tracked independently
- Mutually exclusive tracks (sharing large fraction of hits) must be "cleaned"
 - based on normalized χ^2 , with a penalty for missed hits
- A final refit with smoothing removes potential bias from the seed

Combinatorial growth

- Most tricky problem: if not limited, leads to exponential increase of number of candidate trajectories
- All candidate trajectories (from a single seed) are grown in parallel, one layer at a time
- after the inclusion of measurements from each layer the total number of candidates is limited to a small value
 - e.g. 5
 - this value is within 1 or 2 per mils of the asymptotic efficiency
 - This parameter allows tuning of CPU versus efficiency
 - for HLT tracking the limit is 1

Example of hit combinatorics

Track reconstruction efficiency

- Efficiency is limited by hadronic interactions
 - between 10% and 20% of the pions (depending on momentum and eta) disappear before leaving 8 hits!

Efficiency in jets

- The efficiency in dense environment (jet core) is close (within few percent) to the single particle efficiency
 - so close that the differences are not yet quantified
 - Not very surprising: a combinatorial search should find the correct combination of hits
 - among other combinations
 - if the hits are not affected

Hit contamination

- For 100 GeV Pt b-jets with high lumi pile-up
 - High Pt (above 1 GeV) contamination in yellow
 - Low Pt contamination in blue

Some resolutions

Transverse impact parameter

transverse momentum

Dense environment?

- If a 100 GeV jet core at high luminosity is not a dense environment for the CMS tracker, what is?
 - a 200 GeV jet is significantly denser
 - hardest case studied for proton-proton: three-prong τ decays
 - Is the combinatorial Kalman filter sufficient?
 - Implemented and studied
 - Deterministic annealing filter
 - soft assignment of hits to a single track
 - Multi track filter
 - soft assignment of hits to several tracks simultaneously

Adaptive filters: the DAF and the MTF

800

600

400

200

400

0

Û

Maa n

RMIS

0.25

0.5

KF

KF+MTF

0.75

0.2371

0.3190

Reconstruction of π tracks from the decay of high- $p_{\tau} \tau$: 1600 1400 $H^0 \rightarrow \tau^+ \tau^-, m(H^0) = 500 \text{ GeV}/c^2$ 1200 1000

- KF: Kalman Filter alone
- DAF: DAF with seed from KF
- KF+MTF: MTF tracks, seeded with KF tracks
- DAF+MTF: MTF tracks, seeded with DAF tracks

χ^2 probability

Adaptive filters: the DAF and the MTF

Transverse IP resolution

Transverse IP pull

Conclusions

- The CMS tracker allows for very robust tracking up to the LHC design luminosity.
 - Caveat: this is a Monte Carlo study with ideally aligned and calibrated tracker
 - effects of misalignment presented tomorrow (N. de Filippis)
- The pixel detector has extensive capabilities
 - for stand-alone reconstruction
 - for seeding the track reconstruction
- Advanced track algorithms (DAF...) bring measurable improvements in very dense environments