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Abstract

The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid
(CMS) experiment. It provides the most precise measurements which contribute to the full track
reconstruction. It also allows standalone track reconstruction, which is particularly useful for online
event selection (called High-Level Triggering). The reconstruction algorithms using the Pixel Detector
are presented, including pixel track reconstruction, primary vertex finding and seed generation.
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1 Introduction
The Pixel detector provides high resolution, three-dimensional space points allowing for precise pattern recogni-
tion. With three pixel hits per charged particle, using only the pixel data tracks can be approximately reconstructed
and primary vertices (PVs) can be found. Such “pixel” reconstruction is useful for track seeding, primary vertex
finding and in a variety of High Level Trigger (HLT) algorithms. The Pixel detector is the most suitable for these
tasks due to its good spatial resolution. The typical position resolution is around 10–20 � m in the transverse and
longitudinal coordinates.

The Pixel detector layout considered here consists of three barrel layers with two endcap disks on each side. The
three barrel layers are located at mean radii of 4.4, 7.3 and 10.2 cm and are 53 cm long. The two disks are placed
at 34.5 and 46.5 cm from the interaction point. To achieve a similarly good resolution of the vertex position in the
transverse and the longitudinal planes, a design with a rectangular pixel shape of dimensions 150 � 100 � m � and
a thickness of 290 � m is used. To enhance the spatial resolution by analog signal interpolation, the effect of charge
sharing induced by the large Lorentz drift in the 4T magnetic field is used. Hence the detectors are deliberately not
tilted in the barrel layers but are tilted in the endcap disks, resulting in a turbine like geometry. The whole pixel
system consists of about 66 Mpixels in 1400 detector modules. A more detailed description of the Pixel layout, its
simulation and hit reconstruction can be found in Ref. [1].

The track finding based on pixel hits is carried out in two steps: defining a pair of hits compatible with a track,
and adding a third hit which matches the pair. Two hits (pairs) are enough to define a track seed but the ghost
rate might be high. Track candidates based on three pixel hits (triplets) allow reconstruction of the primary vertex
and can be used in simple algorithms for online event selection, but are not fully efficient. This note describes the
various algorithms used to find pixel pairs, triplets and primary vertices. The performance of these algorithms are
presented and their application in the CMS reconstruction software ORCA [2] are outlined.

In the simulation, the spread of the p-p interactions in the � , � ( ��� 0.0015 cm) and � ( �	� 5.3 cm) directions are
included; however the effect of detector misalignment has not been yet studied.

When discussing the performance of our algorithms two types of efficiencies are used. The “algorithmic” efficiency
is defined as the ratio of the events where a pixel pair/triplet/track is found, to events where the relevant pixel hits
exist. The “absolute” efficiency is defined as the ratio of events where the pairs/triplets/tracks are found to all
events. Thus the absolute efficiency includes detector inefficiencies.

2 Components of the Reconstruction Software
An effort has been made to design the software in a modular way in order to make it robust and allow for flexible
usage. A major asset of the current implementation is the possibility to perform reconstruction in a restricted region
(regional reconstruction) which may be useful for the online software.

The key concept in the regional-based reconstruction is the TrackingRegion. It is defined as a geometric
region of interest with some kinematic constraints. The TrackingRegion specifies the direction around which
the region is defined, the (signed) inverse transverse momentum range and the allowed range of track impact points.
The allowed range of impact points is defined by the vertex position along the beam axis and the maximum allowed
distance from that vertex in both the transverse plane and along the beam axis. Two concrete implementations are
provided, GlobalTrackingRegion and RectangularEtaPhiTrackingRegion. The latter allows the
direction of the track to be constrained to be within a given range of 
 and � .

In CMS, the constraints on 
 and � for RectangularEtaPhiTrackingRegion would most likely come
from the other detectors, e.g. from a candidate � in the muon system. In this study, which is specific to the Pixel
Detector, the constraints are taken from the knowledge of the true 
 and � directions of the track which gives rise
to the hit(s).

The Pixel Reconstruction software is split into several packages, as is illustrated in Fig. 1. Its action can be
decomposed into four steps.

� Estimation of the track position uncertainties – parametrization of hit errors, multiple scattering and longi-
tudinal bending effects (Sections 3.1, 3.2, 3.3),

� Construction of pixel track candidates from pixel hits – searching for hits, hit pairs and hit triplets (Sections 4
and 5),
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� Fitting of pixel tracks and finding primary vertices – assignment of kinematic parameters and their errors to
pixel tracks, finding vertices by associating groups of tracks (Sections 6 and 7),

� Higher-level applications – combinations of basic functionalities with additional filtering, cleaning and effi-
ciency recovering, conversion into standard ORCA object (RecTracks).

At each step the results can be used to construct track seeds (Section 8) and start the full tracker reconstruction.

Single muon events are used for all algorithmic efficiencies presented in this note. The muons were generated with
transverse momenta ����� �����
	��� �������� ��� GeV/ � , pseudorapidity � 
�� ���������� � and transverse impact parameter� � �� � cm. For all algorithmic efficiencies the search region is defined using the generated track information.
The maximum transverse impact parameter of a candidate track is set to !#" � �%$ �� &�� . The allowed � range
	 �('*),+�� �('*-/.0� has a size ! � � ��'*-�.21 �('*),+ and is set to 0.2 cm. This range is selected in such a way that it
contains the muon true vertex position randomly distributed with uniform probability over the 	 � '*)3+ � � '*-�. � range.
Similarly, the region direction is not perfectly centred on the muon but is selected randomly to contain the muon
within the region ! 
 and ! � . The minimum transverse momentum is set to �� &��546�/798�:/;� .

For most other performance plots more complex h < ee � � events are used. For these events, in the case of global
reconstruction, no generator-level information is used during the reconstruction process and the reconstruction
region is constrained by ��=?> @� �A� GeV/ � , �B� [ 1 15, C 15 cm], !D" �E�� � cm. In the case of regional reconstruction
the direction of the region is still selected based on the generator information, since no data from other detectors
was used in the reconstruction.

3 Estimate of track position uncertainties
3.1 Parametrization of Hit Errors

The average spatial resolutions of the barrel pixel hits are about 20 � m and 10 � m in the longitudinal and transverse
directions respectively. The forward disks provide measurement points with a resolution of around 17 � m in the
� direction and 12 � m in the transverse plane pointing towards the beam axis. The spatial resolution of pixel
hits strongly depends on the cluster size, and a more precise evaluation of the resolution can be achieved with
knowledge of the track impact angle onto the detector module. The description of the technique used to perform a
precise parametrization of pixel hit errors can be found in Ref. [3].

3.2 Parametrization of Multiple Scattering

A charged particle passing through material is affected by multiple scattering ([4] and Appendix of this note). The
track deflection due to multiple scattering can be substantial and should be taken into account wherever an accurate
prediction of the particle position in space is needed. In the full online or offline track reconstruction, multiple
scattering effects are included in the error matrix during state propagation. For the approximate prediction needed
for track seeding purposes, a faster parametrization of multiple scattering is required. Such a parametrization has
been developed and implemented in the ORCA reconstruction software. The goal of the parametrization is to
generate

1. the track position uncertainty in a given detector layer when the track originates from the interaction point;

2. the track position uncertainty in a given detector layer when the track is constrained (by its measurement) in
an inner detector layer;

3. the track position uncertainty in a given detector layer when both inner and outer constraints (measurements)
are given.

The simplified track reconstruction is based on the Pixel Detector. The parametrization is thus optimized for the
inner part of the Tracker. The approximations and algorithms used for the parametrization are explained in the
Appendix.

The reliability of the parametrization is demonstrated in Figs. 2–5. Figure 2 shows the test of item 1 above. The
r.m.s. displacement predicted by the parametrization is compared with that obtained from the detailed simulation.
Similarly, the tests of items 2 and 3 are presented in Figs. 3 and 4 respectively. The predicted spread matches
well that of the detailed simulation. The effect of non-Gaussian tails in the multiple scattering is displayed in
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Fig. 5, which shows that the number of standard deviations needed to obtain a given efficiency does not follow the
expectation from a Gaussian distribution.

3.3 Track bending in the longitudinal plane

A charged particle trajectory in a uniform magnetic field follows a helix. Its projection onto the plane transverse
to the magnetic field is a circle. The projection onto the " � (longitudinal) plane during its initial trajectory can be
approximated by a straight line. This approximation is good for high � � tracks. However for transverse momenta
of � (1 GeV/ � ) and a position measurement accuracy of � ( � � � m) it might be insufficient, and the second order
term has to be taken into account:

"������ � > �	� ��
 > @�� �E" C
"�
����� � � (1)

where " is the true radial position of the particle, "������ � > �	� ��
 > @�� the radius from the straight line prediction and �
the inverse curvature (i.e. the bending radius in the transverse plane). The effect of projecting a helix onto the
longitudinal plane is shown in Fig. 6. The deviation between the straight line propagation and the helix projection
is shown as a function of radius for tracks of 1, 2 and 3 GeV/ � transverse momentum. The second order corrections
coincide well with the exact helix computation, except for large radii and low transverse momenta.

4 Finding Hit Pairs
A hit pair consists of an outer hit (with larger radius) and an inner hit (smaller radius) coming from two different
detector layers. The various combinations of layers and disks used to find hit pairs are shown in Fig. 7. The combi-
nations were chosen to provide redundancy in searching for pairs of hits, to satisfy the requirement of maximizing
the efficiency for generating seeds. Tracks that lose a hit in any one of the layers may still be reconstructed in the
other layers. To find pairs of hits, first an outer hit is searched for. The outer hit and the vertex constraint are then
used to search for a second (inner) hit in a layer between the vertex and the outer hit.

Searching for an outer hit within a given layer is straightforward in the case of the GlobalTrackingRegion,
where all hits from a DetLayer (ORCA terminology corresponding in the case of the Pixel Detector to a disk or a
layer) are available. For the RectangularEtaPhiTrackingRegion, the allowed ranges for the position of
the hits are predicted analytically from the minimum allowed momentum, the range of possible track directions and
the interaction point constraint (Fig. 8). The search area is extended to account for multiple scattering ( � � level),
hit errors ( � � level) and the non-linear projection of the helix. Independent constraints on the hit position are
constructed for the � and � (barrel) or � and " (endcap) coordinates. During the search, first the � and then the
�B� " � constraint is checked. In order to speed up the algorithm, first the set of detectors (DetUnits) compatible
with the tracking region is defined and then the hits from those detectors are examined.

The algorithmic efficiency for finding (outer) hits within the RectangularEtaPhiTrackingRegion is
shown in Fig. 9. The efficiencies are shown for the Narrow Region, defined only by the size of the hit posi-
tion errors ( � � ) and multiple scattering ( � � ), i.e. the allowed ! 
 and ! � of the direction of the particle are set
to 0. This serves as a test of the correctness of the position error and multiple scattering parametrizations. The
algorithmic efficiencies obtained are better than 99.6% and depend neither on the track pseudorapidity nor on its
transverse momentum (� � ).
The second hit is required to be inner with respect to the first one. The analytical prediction for its position is
computed independently in the � and � (barrel) or � and " (endcap) coordinates (Fig. 10), taking into account
the same uncertainties as for the outer hit. Since hits from a given DetLayer are accessed more than once, the
relevant hits from a given layer are stored in a cache. They are stored in ! 
 � ! � bins, sorted in � , which allows
faster hit accessing.

The algorithmic efficiency for finding hit pairs is shown in Fig. 11 for RectangularEtaPhiTrackingRegion
of size ! 
 � ! � � �� � � �� � ( ! � in this note is in radians). The efficiency does not depend on the track �0� and
there are small (less than 1%) inefficiencies in the endcap regions. The absolute efficiency to find a hit pair per
generated track is shown in Fig. 12. The effect of pile-up � � is below 1%, as shown in Fig. 13.
� �

In this note “low luminosity pile-up” is defined to be the pile-up at a luminosity of ������� �!� cm "$# s "
�

and corresponds
to about 5 “minimum-bias” events per beam-crossing. “High luminosity pile-up” is defined to be for a luminosity of
�%� �!& cm "$# s "

�
and corresponds to about 25 minimum-bias events per beam-crossing.
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The number of reconstructed pairs depends on the luminosity and the size of the reconstruction region. Figure 14
shows the number of pairs per region for more complex ��<���� � � events as a function of region size. There are
two contributions to the increasing number of pairs with increasing size of the region: the number of real tracks
increases with increasing size of the region, and the combinatorial background increases with increasing number
of hits in the region. Algorithms optimized for efficiency obviously generate more fake pairs. The ratio of ghosts
to real tracks increases by a factor of about 100 for the global region (GlobalTrackingRegion shown in the
right-most bin). This can also be seen in Fig. 15 where the hit pair purity, defined as the ratio of the number of
fully reconstructed tracks to the number of initial pairs, is shown.

The CPU time needed to reconstruct hit pairs is shown in Fig. 16. This was measured using a 2.8 GHz Xeon
processor, and includes hit accessing, reconstruction (but not digitization) and hit-pair searching and creation.
For low luminosity the regional reconstruction time is a few milliseconds, reaching about 30 msec for global
reconstruction. At high luminosity the regional reconstruction time is well below 20 msec and the global one is
about 100 msec.

5 Finding Hit Triplets
In contrast to pair finding, finding pixel triplets requires hits from three different layers or disks. Unavoidable detec-
tor and readout data losses introduce significant inefficiencies which dominate over the algorithmic inefficiencies.
Since an efficiency close to 100% is not achievable, the detailed and time-consuming corrections due to multiple
scattering, hit errors and longitudinal bending are not used. Instead, effective tolerances, adjusted empirically, are
applied.

Triplet finding is based on adding a third hit to pairs of hits. Each combination of pixel layers used in pair finding
defines the layer in which the search for a third hit is performed. The layers and disks chosen are shown in Fig. 17.
In order to find hits compatible with a given hit pair, a search window in the relevant layer or disk is defined. This
window is formed by the tolerances in ! � and ! � in the barrel and ! � and !#" in the endcaps. The ! � window
is centred on the outer hit of the pair. The ! � � !#" � tolerance is centred on the line connecting the two hits. The
values for the ! � and ! � � !#" � tolerances (0.03 rad and 0.03 (0.02) cm, respectively) are optimized for tracks
with transverse momentum above 1 GeV/ � .
The � coordinate of the selected third hit is checked using the region constraints and a more accurate � prediction
coming from a fast circle fitting method based on the parabolic approximation [5] applied in inverted [cm � � ]
coordinates. These coordinates map the Cartesian ��� � to � � � $ � � � C � � � ��� � � $ � � � C � � � , with the relation
� �	� C�
E4�� C� 4�� � , where � , 
 and  are related to the curvature, initial direction and impact parameter.
In the procedure described above, the hit cache is used for fast access to the hits.

The performance plots for finding triplets are shown in Figs. 18–21. The algorithmic and absolute (including
detector data losses) efficiencies are shown in Fig. 18. The lack of multiple scattering corrections is responsible for
a few percent loss of efficiency for muons of ��� less than 2.5 GeV/ � . The absolute efficiencies are approximately
10% lower than the algorithmic ones, which have a plateau at 98%. Triplet finding rapidly loses efficiency for
tracks with pseudorapidity greater than about 2.1, due to the detector geometrical configuration. The efficiency is
shown in Fig. 19 for selected tracks in pure signal events, and with low and high luminosity pile-up superimposed.
The luminosity dependent losses cause up to a 10% reduction in efficiency. The number of reconstructed hit triplets
(Fig. 20) is roughly a factor 100 smaller than the number of hit pairs (Fig. 14). This reflects the fact that hit triplets
are much cleaner than hit pairs, since the combinatorial background of hit pairs is much reduced by requiring a
third hit and the number of “ghost” triplets is small. The purity of these tracks for different region sizes and the
two luminosities is shown in Fig. 21. It varies from 80 (90)% to almost 100% for high (low) luminosity, depending
on the region size.

The CPU time required is shown in Fig. 22. It is comparable with the time to find hit pairs.

6 Evaluation of the Parameters of Pixel Tracks
In this section, each triplet is used to form a track and to subsequently determine its transverse momentum and
longitudinal and transverse impact parameters (IP) [6]. Results of the studies presented in this section refer to
single muon tracks.

A triplet defines a circle in the transverse plane from which the value of the radius of curvature � and transverse
momentum � ��� �� ����� 4�� 4�� (� � in GeV/ � , 
 in T and � in cm) are extracted. However the small lever arm of the
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Pixel detector allows a reliable such estimate to be made only for � � below � 10 GeV/ � . In Fig. 23a, the resolution
�?��� � � $ � � is shown as a function of � � , where �?��� � � is the width of a Gaussian fit to the � � distribution. The
relative momentum resolution is well parametrized by �?� � � � $ � � � �� ������C5��,� � � � (� � in GeV/ � ). In Fig. 23b
�?��� � � $ � � is shown as a function of pseudorapidity for � � of 1 and 10 GeV/ � . For 1 GeV/ � , the relative � �
resolution is as good as 7%, but it already amounts to 22% for 10 GeV/ � tracks.

The track transverse impact parameter is defined as the distance of the point of closest approach to the beam axis
and is denoted ������� . The transverse impact parameter is determined from the coordinates of the centre ( �
	 � ��	 )
and radius � of the unique circle that passes through the three pixel hits. The unsigned distance of closest approach
of the circle to the beam axis is used as an estimate of ��� ��� :

������ � � � � �	 C � �	 1 � � 
For large transverse momentum, this expression contains a difference between two large terms, which may lead to
numerical inaccuracies. To alleviate this potential problem, the circle passing through the three pixel hits can be
approximated by a parabola [5]. The equation of the parabola, expressed in the reduced coordinates defined as

� � �
� � C � � � � � �

� � C � � �

is � �2� � C � � � C �  � � , with

� � �
�
��	 � � � �A1 � 	��	 � �  �A1�� �

��	��  �������0
The transverse impact parameter resolution is shown in Fig. 24a as a function of � � for pseudorapidity � 
0�*� �  �
and � 
0��� �  � . Above 6 GeV/ � , the transverse impact parameter resolution is around 80 � m. When hits from the
Silicon Strip Tracker detector are included in the reconstruction, this resolution significantly improves to about
20 � m.

To estimate the longitudinal impact parameter, � )�� , a helix parametrization is used. The three pixel hits are pro-
jected onto the ( � � � ) plane, where � is the azimuthal angle between the hit and the point of closest approach
around the circle defined by the three hits in the transverse plane. In this plane, the helix projection is expected
to be exactly a straight line, up to uncertainties due to the hit position measurement and multiple scattering in the
detector material. The longitudinal impact parameter is defined as the point of intercept between the line joining
the first two pixel hits ( � ��� � � � ��� � ) and the � axis :

� )�� � � � 1 � �� � 1�� � � � � 1	� � �  (2)

The longitudinal IP resolution, �����! , is shown in Fig. 24b as a function of pseudorapidity 
 for three different
values of � � . The poorer resolution at low 
 reflects the fact that the pixel position resolution in the � direction is
poor for low 
 tracks, due to the absence of charge sharing between pixels. The longitudinal IP resolution can be
improved by a factor of two if the full Tracker information is used.

7 Pixel Vertexing
Primary-vertex finding based on the pixel hits provides a simple and efficient method for measuring the position
of the primary-vertex (PV). This measurement is subsequently used for track seeding and in many High-Level
Trigger (HLT) analyses. It must therefore be sufficiently accurate and fast. For this reason PV finding is reduced
here to a one-dimensional search along the � axis.

The two PV finding algorithms described below make use of the pixel tracks reconstructed from hit triplets (Sec-
tion 5). Usually triplets found in the full pixel detector acceptance (global region) are used. However the triplet
finding can also be restricted to a selected region in order to make the vertex finding faster. The search for the pri-
mary vertex along the � axis is based on the longitudinal impact point, � )�� , evaluated from pixel tracks (Section 6).
Only pixel tracks reconstructed with �/� in excess of 1 GeV/ � and a transverse impact point smaller than 1 mm are
used for primary vertex finding.

Two vertex-finding algorithms have been implemented and tested. The histogramming method progressively
merges tracks close enough to each other according to their longitudinal impact points, � )�� , to form PV candi-
dates. The divisive method looks for large � )"� intervals without tracks to divide the � axis into several regions. An
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average PV position is computed from all tracks in each region. Tracks not compatible with that average position
are discarded. The discarded tracks are recovered to make a new vertex candidate. This iterative procedure stops
when all tracks are found to be compatible with the corresponding PV positions. Both PV finding algorithms are
described in more detail in Ref. [6].

After vertex finding, the vertex candidates are sorted in decreasing order according to the sum of their track � �� ,
with a � � ceiling at 10 GeV/ � to account for the imprecision in the � � measurement for three-hit tracklets. A
detailed description of the algorithms can be found in Ref. [6].

Among the primary-vertex candidates, the closest primary vertex is defined as that closest in � to the simulated
signal primary vertex, and the tagged primary vertex as the one with the largest �0� sum. The efficiency to find the
primary vertex (tagged � � � � or closest ��� 
 �	� � ) is defined with respect to vertices reconstructed inside a window of
500 � m around the position of the generated signal primary vertex. The primary vertex finding efficiency achieved
for the signal primary vertex is given in Table 1 for both algorithms, with low-luminosity pile-up.

Table 1: Efficiencies of signal primary vertex finding for the histogramming and divisive pixel primary-vertex
finder algorithms, at low luminosity.

Histogramming Divisive
� � 
 �	� � ��� � � � � 
 � � � ��� � �

u-jets;
� � � ��� GeV 0.99 0.98 1.00 0.99

u-jets; � �#� � � � � ��� GeV 0.97 0.90 0.99 0.94
b-jets;

� � � ��� � GeV 0.98 0.96 0.99 0.99
b-jets; ���#� � � �E� � GeV 0.97 0.89 1.00 0.96
H (115 GeV/ � ��� <���� , g fusion 0.89 0.75 0.94 0.80
H (150 GeV/ � ��� <	�
� < � ��� � 0.97 0.96 1.00 1.00
B � � < J

$ �� 0.81 0.61 0.97 0.78����
0.99 0.98 1.00 1.00� ���� � � (120 GeV/ � � � <�� �� 1.00 0.99 1.00 1.00

The divisive method generally has a better primary vertex efficiency for the different event samples. This is because
it takes into account the compatibility of the tracks with the estimate of the vertex, instead of considering only the
compatibility of adjacent tracks. For most event types the primary vertex is recovered with an efficiency close to
100%. The primary-vertex finding efficiencies are significantly below 100% for events such as

� <���� , where
the low charged-particle multiplicity does not allow the signal primary vertex to be always distinguished from the
pile-up primary vertices. Other methods to find the most likely signal PV specific to these physics channels are
under investigation. At high luminosity, the inefficiency roughly doubles with respect to the results of the divisive
algorithm at low luminosity, as explained in Ref. [6].

The PV � position is reconstructed typically with a resolution of better than 50 � m for both the histogramming
and divisive methods [6]. Examples of the position resolution of the reconstructed PV obtained with the divisive
method are shown for 100 GeV u-jet events in Fig. 25a and for 100 GeV b-jet events in Fig. 25b. The position
resolution for both algorithms, for several event types, with low-luminosity pile-up, is summarized in Table 2.

The average time for PV finding is 0.7 ms per event, for both the histogramming and divisive methods. The time
was measured on a 2.8 GHz PentiumIV, for � �� events with

��� � �� � � � � GeV, at high luminosity. The time quoted
does not include the contributions from hit reconstruction and triplet finding.
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Table 2: Spatial resolution of the � coordinate of the signal primary vertex for the histogramming and divisive pixel
primary-vertex finder algorithms, at low luminosity.

Histogramming Divisive
�?� ��� � RMS � ��� � �?� ����� RMS � �����

u-jets;
� � � � ��� GeV 33.3 37.0 27.1 28.7

u-jets; � � � � � � � ��� GeV 41.5 55.8 33.2 42.0
b-jets;

� � � � ��� GeV 45.9 54.1 38.1 48.3
b-jets; � � � � � �E� � GeV 50.4 65.6 44.4 55.9
H (115 GeV/ � � ��<���� , � fusion 51.1 64.9 39.1 53.3
H (150 GeV/ � � ��<	�
� < � �(� � 39.7 45.5 30.3 34.4
� �� <�� $ �  69.4 90.2 74.8 98.5� ��

40.1 51.4 32.5 40.2� �� � � � (120 GeV/ � ��� <�� �� 38.6 51.3 28.7 32.5

8 Generation of Seeds
A trajectory seed is the starting point for the pattern recognition in the tracker. The seed should constrain all five
track parameters, the estimate of these parameters should be sufficiently close to their true value to allow the use
of linear fitting algorithms (e.g. Kalman filter) and the uncertainties of the parameters should be sufficiently small
to allow a reasonably compact search region for hits.

8.1 Seeds from hit pairs

The minimal information from the pixel detector needed to construct a trajectory seed is a hit pair. Since hit pairs
do not constrain the momentum, the additional assumption that the track passes through either a known vertex or
the centre of the beam spot must be used.

The parameters of the seed are first estimated at the centre of the beam spot, using the equations of an ideal helix
passing through the two hits and the beam axis (the beam spot does not constrain the seed in � ). The uncertainties
assigned to the helix at the beam spot are

� 1 rad in the polar and the azimuthal angles,

� 1 (GeV/ ��� � � on the inverse momentum,

� the transverse and longitudinal uncertainty on the position of the vertex, or the dimensions of the “region of
interest” defined by the tracking region.

The initial track parameters are then propagated to the surface of the closest hit and updated with the hit measure-
ment information. The updated track state is again propagated to the surface of the outer hit, and updated with its
measurement information. The resulting track state includes an error matrix which takes into account the size of
the region, the hit errors, and the multiple scattering. The procedure is slow (compared to hit pair finding) due to
the two propagations and updates, and takes about 0.3 msec per seed.

8.2 Seeds from hit triplets

The same sequence of operations can be applied to transform a hit triplet into a trajectory seed, the only difference
being an additional propagation and update on the surface of the third hit.
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The seeding from triplets versus seeding from pairs has the same advantages and disadvantages as the hit triplet
finding versus hit pair finding described in the previous sections: the number of seeds is much smaller and the purity
of the seeds is high, but their efficiency is significantly lower. For these reasons the standard track reconstruction
uses seeds from hit pairs and seeding from triplets is used in special cases, such as reconstruction of events from
heavy-ion collisions.

9 Conclusions
Reconstruction algorithms using the Pixel Detector, including pixel track reconstruction, primary vertex finding
and track seed generation have been developed. The key feature of these algorithms is a track reconstruction based
on two or three pixel hits. Track parameters are calculated with a simple helix approach. It has been demonstrated
that a high track reconstruction efficiency ( � 90%) and a low fake rate can be achieved. The signal primary vertices
can be found and their position along the � axis can be measured with a resolution better than � � ��� . The pixel
standalone reconstruction is useful for the online HLT event selection.
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Appendix: Multiple Scattering Parametrization - technicalities
Thin layer approximation

Multiple scattering results from a large number of deflections dominated by the Coulomb scattering described by
the Moliere theory. The effect can be well described [4] with a Gaussian approximation of the projected angular
distribution. The width of the Gaussian distribution for a particle of unit charge can be written as:

���� ��� ���	� 4 � � �
� ����� 4 �� ��� ���� ���� ��� �
�
�
$��
� 	�� C �� �������

� � � $�� � � � � (3)

where � �� is the sigma of the direction deflection projected onto any plane containing the initial direction,
�

the
polar angle �

�
, ��� $ � ���	�

the momentum,
� � the velocity and �

$��
� the thickness of the medium in radiation lengths

along the track direction.

If the detector is composed of several thin detector layers the multiple scattering can be considered as a product of
scatterings on thin surfaces. The sigma of the position deflection in detector � , projected onto a plane transverse
to the beam line (i.e. in the " 1 � plane), for a particle coming from the interaction point and crossing layers � to
� at transverse radii "����� " � , is given by:

� ���� � !�" �#
!%$ �
	 � � ! 4�� " � 1 " ! � � � (4)

One can show that if an additional constraint (measurement) is known in detector & , outer to � , the formula for
the transverse deflection � ��� takes the following form:

� ���� � � " ' 1 " �" ' 1 " � � �
!�( �#
!%$ �*) �

	 � � ! 4 � " ! 1 " � � � � C � " � 1 "��" ' 1 " � � �
!�" '#

!%$ �+) �
	 � � ! 4�� " 'B1 " ! � � � (5)

These formulae are valid for barrel layers and endcap disks and allow one to estimate the multiple scattering for
all three cases listed in Section 3.2. Although there is no explicit dependence on the polar angle

�
, the contributing

thickness in radiation lengths should be calculated along the track, i.e. one has � ! � �-, ! $ � ���+�
for barrel layers

and � ! � �-, ! $/.�0 � � for endcap disks (where �1, ! is the medium thickness).

Algorithm

The Tracker layout can be approximated be a set of thin layers (which will be called MS-layers to distinguish them
from the standard ORCA DetLayers) representing various detector layers and their support. The sets (containers) of
MS-layers are constructed in pseudorapidity bins (ranges). The MS-layers representing tracker sensitive detectors
are attached to the sets. The sets are then supplemented with additional (not present in the reconstruction geometry)
MS-layers representing the beam line and all pixel detector support structures. Each MS-layer is then assigned a
value of �

$��
� by associating the material between physical layers to the closest MS-layer. The �

$��
� information

is extracted from the simulation geometry, to benefit from the fact that the Tracker description in the CMS detector
simulation program includes not only sensitive material but also supports, cabling, cooling pipes and electronic
chips. The summed thickness of material in radiation lengths ( �

$��
� ) is stored in an external datafile and is used

by the multiple scattering algorithm in ORCA.

# � Note that this formula does not depend on 2 since it also enters into the 354 . The splitting of the 687:9;2 out of <>=? is useful in
the detector coordinate frame.
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Figure 1: Code components and their dependencies.
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Figure 2: Parametrization of multiple scattering for (a) pixel barrel layers 1, 2 and 3, and (b) pixel endcap disks
1, 2 and 3, shown as the r.m.s. trajectory deflection in the " � plane for tracks constrained by the primary vertex.
The points show the � � differences between the positions given by the full simulation and the ideal helix, for
� � � � GeV/ � tracks. The solid lines show the spread predicted by the parametrization. For the purposes of
this plot, a third pixel disk is added (but is not otherwise used in the simulations presented in this note and is not
foreseen to be installed in CMS).
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Figure 3: Parametrization of multiple scattering. (a) The � � trajectory deflection in barrel layer 1 for tracks
constrained by the primary vertex and a measurement in barrel layer 2. (b) The � � trajectory deflection in endcap
disk 1 for tracks constrained by the primary vertex and a measurement in endcap disk 2. The points show the � �
differences between the positions given by the full simulation and the ideal helix, for � � � � GeV/ � tracks. The
solid lines show the predictions of the parametrization.
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Figure 4: Parametrization of multiple scattering for (a) barrel pixel layer 2, and (b) forward pixel disk 2, for tracks
constrained by a measurement in the preceding layer or disk. The points show the � � differences between the
positions given by the full simulation and the ideal helix, for � � � � GeV/ � tracks. The solid lines show the
predictions of the parametrization.
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shown as a function of track transverse momentum, for a single charged particle in a barrel layer. For a perfect
Gaussian distribution the chosen values of � would correspond to 1, 2 and about 2.6 standard deviations.
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Figure 7: The combination of layers (bold lines) used for finding pairs of hits.
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Figure 8: Illustration of the (initial) outer hit finding in the RectangularEtaPhiTrackingRegion. The
allowed ranges for the positions of the hits are marked with bold-dashed lines. The � interval is determined by
the range of the momentum direction, the range of the value of the transverse momentum and the primary vertex
constraint. The range in the � or " coordinate is given by the constraints on the track direction and primary vertex.
Track prediction uncertainties are also taken into account in both cases, but are not shown in the plot.
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Figure 9: The algorithmic efficiency for outer hit finding for the RectangularEtaPhiTrackingRegion as
a function of (a) transverse momentum, and (b) pseudorapidity. In order to test the correctness of the hit errors and
treatment of multiple scattering, the “narrow” region described in the text was used. The plots are made for single
muon events.
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Figure 10: Illustration of the inner hit finding in the (a) � , and (b) � or " coordinates. The allowed ranges for the
positions of the hits are marked with bold lines. The constraints on hit position arise from the position of the outer
hit and the allowed ranges of momentum and direction. The range of directions is constrained by the vertex position
( 
 '*)3+ � ��� � 
 '*-/. � ��� ), and, for the RectangularEtaPhiTrackingRegion, can be additionally constrained
by the direction of the region ( 
 '*),+ � ��� � 
 '*-�. � � � ). Track prediction uncertainties are also taken into account in
both cases, but are not shown on the plot.
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size ! 
 � ! �	� �� � � �� � , as a function of (a) generated transverse momentum, and (b) pseudorapidity. The plots
are made for single muon events.
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Figure 12: The absolute efficiency for finding hit pairs for a RectangularEtaPhiTrackingRegion of size
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 � ! ��� �� � � �� � , as a function of (a) generated transverse momentum, and (b) pseudorapidity. The plots are
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Figure 13: The luminosity dependent efficiency losses for hit pair finding. The absolute efficiency as a function
of region size is shown for the same �/< � � � � events with (a) no pile-up, (b) low-luminosity pile-up, and (c) high-
luminosity pile-up. The region is centred on the most energetic muon in the event. The efficiency shown is that of
all selected generated tracks. This selection includes cuts on pseudorapidity ( � 
�� � �� � ) and transverse momentum
(�9���E�  � GeV/ � ), and the momentum directions and impact points of all selected tracks must be inside the region.
A pair is matched to a simulated track if both hits of the pair match those of the simulated track.
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Figure 14: The number of hit pairs reconstructed as a function of region size for (a) low- and (b) high-luminosity
pile-up. The plots are made for ��< ��� � � events. The vertical bars indicate the spread. The region is centred on
the highest ��� muon.
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Figure 15: The purity of hit pair finding for ��<���� � � events with (a) low- and (b) high-luminosity pile-up. The
purity is defined as the ratio of the number of fully reconstructed tracks (in the full Tracker) to the initial number
of seeds constructed from pairs of hits. Only reconstructed tracks well matching the simulated ones are selected
( ! � �

�
! 
 � C ! � � � �� ���(� and � ! �/�%� ��,��� cm). The region is centred on the highest ��� muon.
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Figure 16: The real CPU time (2.8 GHz Xeon) used to reconstruct hit pairs as a function of region size. The events
are �/< � � � � with (a) low- and (b) high-luminosity pile-up. The region is centred on the highest � � muon.
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Figure 17: The combination of layers used for finding hit triplets. The pairs of bold lines indicate the layers used
for hit pair generation, while the bold-dashed line shows the layer in which the search for the third hit is performed.
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Figure 18: The efficiencies of the triplet finding. The algorithmic (3-hit tracks, upper curves) and absolute (all
tracks, lower curves) efficiency is plotted as a function of (a) transverse momentum, and (b) pseudorapidity. The
reconstruction is performed with a RectangularEtaPhiTrackingRegion of size ! 
 � ! � � �� � � �� � .
The efficiency is measured for single muon events, and so does not take luminosity dependent data losses into
account. The drop in efficiency at the barrel-endcap transition region is caused by the fact that among tracks
providing three hits in different planes there are combinations of planes which are not used in the reconstruction
(for example barrel layers 1 and 2 with endcap disk 2).
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Figure 19: The luminosity dependent efficiency losses. The absolute efficiency as a function of region size is shown
for the same ��< � � � � events with (a) no pile-up, (b) low-luminosity pile-up, and (c) high-luminosity pile-up. The
region is centred on the most energetic muon in the event. The efficiency shown is that of all selected generated
tracks. This selection includes cuts on pseudorapidity ( � 
0�0�
�� � ) and transverse momentum (� � �A�  � GeV/ � ),
and the momentum directions and impact points of all selected tracks must be inside the region. A triplet is matched
to a simulated track if all three hits match those of the simulated track.
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Figure 20: The number of reconstructed hit triplets as a function of region size. The plots are made for
��<���� � � events, with (a) low- and (b) high-luminosity pile-up. The region is centred on the highest momentum
muon. The vertical bars show the spread.
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Figure 21: The triplet purity as a function of region size, for (a) low- and (b) high-luminosity pile-up. The purity
is defined as the ratio of triplets associated to generated tracks (both from the signal and the pile-up events) to
the total number of reconstructed triplets. A triplet is associated to a generated track if their directions are close
( ! � �

�
! 
 � C ! � � � �� ����� and � ! 
��9� �� ����� ). The simulated events are ��< � � � � and the region is centred

on the highest � � muon.
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Figure 22: The real CPU time (2.8 GHz Xeon) used to reconstruct hit triplets as a function of region size. The
events are ��<���� � � with (a) low- and (b) high-luminosity pile-up. The region is centred on the highest � � muon.
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Figure 1: Linear behaviour of σ(pT )/pT as a function of
pT , for single muon tracks.

Figure 2: The pT resolution as a function of the pseudora-
pidity for single muon tracks with pT of 1 and 10 GeV/c.

For large transverse momentum, this expression is a difference between two large terms, which may lead to numer-
ical inaccuracies. To alleviate this potential problem, the circle through the pixel hits may always be approximated
by a parabola [3], the equation of which is expressed with the reduced coordinates

u =
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, v =
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The transverse impact parameter resolution is shown in Fig. 3 as a function of pT and for the two pseudorapidity
regions |η| < 1.7 and |η| > 1.7. Above 6 GeV/c, the transverse impact parameter resolution is around 80 µm.
When the hits from the Silicon Tracker detector are used as well, this resolution is improved to 20µm.

3.3 Longitudinal Impact Parameter

To estimate the longitudinal impact parameter, zIP, both a linear approximation and the complete helix parametriza-
tion were implemented and tested for the HLT.

In the first case, the three pixel hits are projected onto the (r, z) plane, and their coordinates are fit in this plane to
a straight line. The longitudinal impact parameter is defined as the point of intercept between this line and the z
axis.

A higher accuracy can be reached, however, with the full helix parametrization. The three pixel hits are now
projected onto the (ψ, z) plane, where ψ is the azimuthal angle difference between the hit and the point of closest
approach around the circle defined by the three hits (Section 3.2). In this plane, the helix projection is expected to
be exactly a straight line, up to the uncertainties due to the hit position measurement and the multiple scattering
in the detector material. The longitudinal impact parameter is defined as the point of intercept between the line
joining the first two pixel hits (ψ1,2, z1,2) and the z axis :

zIP = z1 −
ψ1

ψ1 − ψ2

(z1 − z2). (1)
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Figure 1: Linear behaviour of σ(pT )/pT as a function of
pT , for single muon tracks.

Figure 2: The pT resolution as a function of the pseudora-
pidity for single muon tracks with pT of 1 and 10 GeV/c.

For large transverse momentum, this expression is a difference between two large terms, which may lead to numer-
ical inaccuracies. To alleviate this potential problem, the circle through the pixel hits may always be approximated
by a parabola [3], the equation of which is expressed with the reduced coordinates
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The transverse impact parameter resolution is shown in Fig. 3 as a function of pT and for the two pseudorapidity
regions |η| < 1.7 and |η| > 1.7. Above 6 GeV/c, the transverse impact parameter resolution is around 80 µm.
When the hits from the Silicon Tracker detector are used as well, this resolution is improved to 20µm.

3.3 Longitudinal Impact Parameter

To estimate the longitudinal impact parameter, zIP, both a linear approximation and the complete helix parametriza-
tion were implemented and tested for the HLT.

In the first case, the three pixel hits are projected onto the (r, z) plane, and their coordinates are fit in this plane to
a straight line. The longitudinal impact parameter is defined as the point of intercept between this line and the z
axis.

A higher accuracy can be reached, however, with the full helix parametrization. The three pixel hits are now
projected onto the (ψ, z) plane, where ψ is the azimuthal angle difference between the hit and the point of closest
approach around the circle defined by the three hits (Section 3.2). In this plane, the helix projection is expected to
be exactly a straight line, up to the uncertainties due to the hit position measurement and the multiple scattering
in the detector material. The longitudinal impact parameter is defined as the point of intercept between the line
joining the first two pixel hits (ψ1,2, z1,2) and the z axis :

zIP = z1 −
ψ1

ψ1 − ψ2

(z1 − z2). (1)

3
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Figure 23: The behaviour of �?� �/� � $ ��� (a) as a function of ��� and (b) as a function of pseudorapidity for single
muon tracks with ��� of 1 and 10 GeV/ � .
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Figure 3: Transverse impact parameter resolution as a function of pT , for two different pseudorapidity regions.

The longitudinal IP resolution, σzIP
, is shown in Figs. 4 and 5 as a function of pseudorapidity η for three different

values of pT , both in the linear approximation and with the helix parametrization. The helix parametrization is
always better than the linear approximation by 40 to 50%.

The longitudinal impact parameter is of prime importance in the determination of the primary-vertex z position
(Section 4). Its resolution is therefore a crucial input. For this reason, the σzIP

dependence on pT was parametrized
in three pseudorapity ranges, 0 < |η| < 0.8, 0.8 < |η| < 1.6 and |η| > 1.6. As a cross check, Fig. 6
shows the distribution of (zrec

IP − zsim
IP )/ σzIP

for single muon tracks with a pT from 1 to 10 GeV/c in the Pixel
detector acceptance. The longitudinal IP resolution is improved by a factor of two by the use of the full Tracker
information.

The quality of the track entering the primary-vertex determination needs also to be quantified. The χ2 of the linear
fit in the (r, z) plane is retained for this purpose. In this χ2, the uncertainty on the hit positions is assumed to be
the quadratic sum of the detector resolution [4] and the expected multiple scattering contribution.

4 Primary Vertex Finding
The primary-vertex finding based on pixel hits provides to the trigger the first primary-vertex position measure-
ment. This measurement is subsequently used for track seeding and in most High-Level Trigger (HLT) analyses.
It must therefore be fast and precise enough. For this reason primary-vertex finding is reduced here to a one-
dimensional search along the z axis.

The relevant sets of three hits are collected by the triplet finding algorithm described in Ref. [5]. All the results
presented in the following refer to hit triplets found in the full Pixel detector acceptance. (It is also possible to
restrict the triplet finding to selected regions of the Tracker detector, so as to render the vertex finding faster and
more flexible.) The detailed performance study reported here refers to the vertex finding in qq̄ events with 17.3
pileup events per beam crossing, as will be the case at high luminosity in the LHC. Many different simulated event
samples, at high and low luminosity, were also studied, and the corresponding performance figures are summarized
here as well. The minimum bias and the underlying events were generated with PYTHIA [6] as described in
Ref. [7]. Because the performance of primary-vertex finding depends strongly on the charged-particle multiplicity
and pT spectrum, the efficiencies in this note have to be considered with caution. Different models could indeed
lead to substantially different figures.

Two vertex-finding algorithms were tested and implemented in the HLT. The Histogramming Method progressively
merges tracks close enough to each other in zIP, to form primary-vertex candidates, denoted ’PV Clusters’ in the
following. The Divisive Method looks for large zIP intervals without tracks to divide the z axis in several regions.
In both methods, an average primary-vertex position is computed from all tracks in each of the PV clusters, and
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Figure 4: Resolution of the longitudinal impact point from
the linear approximation, as a function of η and for for pT

values 1, 10 and 100 GeV/c.

Figure 5: Resolution of the longitudinal impact point from
the helix parametrization, as a function of η and for for pT

values 1, 10 and 100 GeV/c.
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Figure 6: Pull distribution of the longitudinal IP for single muon tracks with pT from 1 to 10 GeV/c in the full Pixel detector
acceptance.
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Figure 24: (a) The transverse impact parameter resolution as a function of ��� for two different pseudorapidity
regions, and (b) the longitudinal impact parameter resolution as a function of 
 for � � of 1, 10 and 100 GeV/ � , for
single muon tracks.
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Figure 25: The pixel reconstructed primary vertex � position residuals for (a) u-jet and (b) b-jet events.
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