Muon Isolation Validation Package

- Version-to-version consistency check for CMSSW
- Online monitoring of IsoMu DQM
 - Current quantities available:
 - Number and p_T of muons in an event
 - Number and total p_T of tracks within .3 in $\eta \phi$ of candidate
 - Number of CAL towers and total E_T within .3 in $\eta \phi$ of candidate Separately for ECAL, HCAL, and HO
 - Muon momentum / N Tracks
 - Weighted CAL energy: 1.5 (ECAL E_T) + HCAL E_T
 - Cumulative Distributions of each
 - Quantities plotted as 1D Histograms, 2D scatter and profile plots
- 3 Sample types used:
 - − b-jet, c-jet, $z \rightarrow µµ$

Current Development

- Version-to-version consistency
 - Adapted package to run for 17x, 18x, 200prex
 - Results in following slides
- Online monitoring
 - Original scheme: record data in vectors, fill histograms in one final step
 - Potential memory issues
 - Histograms don't fill continuously: not good for monitoring
 - New scheme: continuously filling histograms
 - Implemented for all releases
 - Testing implementation, updating versions in CVS

Example: $Z \rightarrow \mu \mu$ vs b(c)-jet (167)

Muons from Z tend to be higher momentum, better isolated

Consistency check: 167 vs 200(p6)

Good consistency in general for b-jet

Consistency check: 167 vs 180

Large discrepancy for b-jet: more muons with better isolation for 180

Conclusions

- Easy part (getting things compiling, running) basically done
- Hard part (understanding version-toversion behavior) underway
- Next steps:
 - Documentation
 - Automation of histogram plotting
 - Comparisons with reference histograms