

LZ Liquid Scintillator Screener Detector

Scott Haselschwardt, for the LZ Collaboration APS April Meeting 2018 April 16, 2018

The LZ Outer Detector

- ~17 tonnes Gd-loaded, LAB-based LS
 - Neutrons thermalize and capture on Gd:
 - n + Gd -> Gd + (3-4x) γ (~9 MeV)
- 100-200 keV threshold
- Veto neutrons in ~ 500 µs
- Want < 100 Hz from all sources

²³²Th Chain

²³²Th 14 Gyr ↓ α (4.0 MeV)

²⁸Ra 5.8 yr

High Scintillator Purity Required

In LS counting we see everything! α 's, β 's & γ 's!

- ²³⁸U chain, ²³²Th chain & ⁴⁰K
- ¹⁴C (156 keV β) a priority

• Need to avoid atmospheric levels of ¹⁴C!

Rates enhanced by 14x & 10x

The LS Screener Detector

- Reynolds UVT acrylic (same as OD)
- 3x R11410-20 PMTs
 - Very radiopure (~mBq)
 - o LZ PMT bases
- ~ 24 kg GdLS
 - \circ ~1/700 of OD LS
 - Produced by M. Yeh at BNL
- 14 kg water shield
- Wrapped in Tyvek reflector
- ~300 photoelectrons/MeV

Underground Commissioning, Nov. 2016

Water volume full, mounting PMTs

GdLS filling in underground cleanroom

Ready for Water Tank Deployment

Filled w/ GdLS and water. PMTs mounted:

Teflon tube for thoron calibration

Wrapped in single layer Tyvek, ready for deployment:

Water Tank Deployment

Data Taking Overview

- Deployed in LUX water shield
- Pulses amplified & digitized by LZ electronics
- Run 1: GdLS

 Mid Nov 2016 Early Jan 2017
- Run 2: No Gd-loading

 Late Jan 2017 Late Feb 2017
- ~Weekly PMT gain monitor
- Calibrations end each run:
 - γ : ¹³⁷Cs, ²²Na, ⁴⁰K, ²²⁸Th
 - $\alpha \& \beta$: Thoron bubbling

•10

Calibrations

- External γ sources
- Bubble in ²²⁰Rn...entire ²¹²Pb subchain
- Pulse shape discrimination

Testing thoron bubble at UCSB

Simulation Tuned to Calibrations

- Detailed geometry in Geant4-based sim
- Calibrate optical parameters:
 - LS light yield (photons/MeV)
 - \circ Birk's Law parameters for α quenching
- External backgrounds modeled in fits

¹⁴C Measurement in Run 2

U, Th, Other: Fit to $\alpha \& \gamma/\beta$ Data

 α 's

It gets complicated...

Fit Results

Isotope		Gd-Loaded LS Activity (mBq/kg)	Unloaded LS Activity (mBq/kg)	Method
	^{238}U	0.302 ± 0.022	< 0.02	α Fit
²³⁸ U Chain	234 Pa	0.32 ± 0.08	< 0.013	$\gamma/eta~{ m Fit}$
	²²⁶ Ra Subchain	0.033 ± 0.003	0.019 ± 0.002	BiPo
	$^{210}\mathrm{Bi}$	0.45 ± 0.03^{st}	$0.15 \pm 0.01^{**}$	$\gamma/eta~{ m Fit}$
	²¹⁰ Po	$0.458 \pm 0.024^{*}$	0.153 ± 0.006^{stst}	$lpha { m Fit}$
²³² Th Chain	232 Th	0.163 ± 0.031	0.097 ± 0.007	α Fit
	$^{228}\mathrm{Ac}$	< 0.22	< 0.014	$\gamma/eta~{ m Fit}$
	²²⁸ Th Subchain	0.007 ± 0.002	0.0041 ± 0.0006	BiPo
Other	⁴⁰ K	0.49 ± 0.11	0.31 ± 0.02	γ/β Fit
	$^{7}\mathrm{Be}$	1.19 ± 1.01	3.58 ± 0.43	$\gamma/eta~{ m Fit}$
	85 Kr	0.23 ± 0.11	0.09 ± 0.04	γ/β Fit
	176 Lu	0.20 ± 0.05	-	γ/eta Fit

HPGe Results on Gd Powder:

Isotope	mBq/(kg Gd(TMHA) ₃)	mBq/(kg GdLS)
U _e	< 7.4	< 0.030
Ul	21 ± 2	0.084 ± 0.008
The	< 3.3	< 0.013
Th	< 1.2	< 0.0048
⁴⁰ K	< 28	< 0.11
¹⁷⁶ Lu	70 ± 15	0.28 ± 0.06

- U, Th chains not in equilibrium
- A good case for [GdLS] = [Gd] + [LS]

Implied Outer Detector Rates

GdLS	GdLS Impurity	Goal/Estimate (Hz)	Measurement (Hz)	Measured with Screener (zero threshold assumed)
	²³⁸ U	3.75	49 / 8 (BiPo)	
	²³² Th	3.75	11 / 1.2 (BiPo)	
	⁴⁰ K	3.75	8.5	
	^{14}C	3.75	8.1	
	¹⁷⁶ Lu	-	3.5	
Cavern γ's		91 (200 keV)	25 (200 keV)	
LZ Components		75 (100 keV)	7 (100 keV)	
Total OD		181	112.1 / 61.3	

Conclusions

- Screener campaign a success!
- Providing useful feedback to LZ
 - Operational experience with GdLS
 - Helped in design of OD filling system
 - GdLS production modifications for lower backgrounds (2x purification)
- Our understanding of backgrounds in the OD is ever improving
- GdLS purity looking promising!

Thank You!

Extra Slides

Thoron Calibration

- Bubble N₂ past ²²⁸Th source into LS
- Vents through concentric tubing to bubbler outside water tank

Testing at UCSB

Calibrated PSD Selects $\alpha \& \gamma/\beta$ Data

•21

End of Run Z-Scan

