The LZ LS screener

Scott Haselschwardt DOE Site Visit August 22, 2016

Motivation & Overview

- Low rate/dead time in LZ OD... total rate < 100 Hz for 200 keV (baseline); 100 keV (goal) threshold
- Internal contaminations: sensitive to α -particles, β 's, etc
- ¹⁴C especially (156 keV endpoint)... need screen 6 orders of magnitude below atmospheric (10⁻¹²) level

"LS Screener"

- Goals:
 - Rate and energy spectrum from GdLS impurties...
 - Operational experience
- Concept: 1000th size of OD gives 1000th the rate: $Hz \rightarrow mHz$
- Planned data taking in LUX/LZ water tank early November

Proposed Internal Rate Contributions Alphas, Betas, Gammas Included

Component	Ra	Sum			
	²³⁸ U	²³² Th	⁴⁰ K	¹⁴ C	(Hz)
LAB	3	0.4	3	3	8.8
GdCl _{3.} 6H ₂ O	1.6	1.8	0.2		3.6
PPO	0.2	0.2	0.2	0.2	0.9
TMHA	0.2	0.2	0.2	0.2	0.9
bis-MSB	0.2	0.2	0.2	0.2	0.9
Sum	5.5	2.9	3.4	3.2	15

Radiopurity Achieved (ppt by mass)

	²³⁸ U	²³² Th	⁴⁰ K	Method	¹⁴ C
LAB (impure)	0.02±0.002	<0.007	ongoing	PNNL-Isotope Dilution ICP-MS	? .
LAB (purified)	<0.004	<0.007	ongoing	PNNL-Isotope Dilution ICP-MS	? :
GdCl ₃ .6H ₂ O (purified)	<100	<100	ongoing	DayaBay-HPGe	
PPO (H ₂ O)	<150	<640	25±2	UC Davis-NAA	?
bis-MSB	<210	<190	30± 10	UC Davis-NAA	?

- Ongoing process for ⁴⁰K
- ¹⁴C is a challenge:
 - (1) keep the solvent fresh (process with vendor)
 - (II) will screen to 10⁻¹⁵ with LLNL Accelerator Mass Sprectrometry
 - (III) the proposed LZ-Screener (1/1000 of total mass) will assess the activity of final Gd-LS at ~mHz

Rate Components

Component	Rate (Hz)			
Mine/Rock Gammas	91 (200 keV)			
¹⁵² Gd alphas	34 (170 keV)			
Gd-LS	15 (100 keV)			
Other LZ Components	7 (100 keV)			
OD Acrylic	5 (100 keV)			
Total	≈200 (100 keV),			
	≈130 (200 keV)			

Screener Overview

- Made of UVT acrylic
- ~ 24 kg GdLS
- ~ 14 kg Water Shield
- 3 LZ R11410 PMTs
 <u>Very radiopure</u>
- Wrapped in highly reflective tyvek

CAD Model by Susanne Kyre

Construction & Tests at UCSB

Received in May 2016

Vessel inspection - Susanne

PMT Mounts Gluing w/ Susanne

Construction & Tests at UCSB

Water Fill w/ Dean White

PMTs mounted and cabled (detector stand designed by Susanne)

Dark box w/ muon tagging

Data Taking

Bonus: independent use/testing of LZ electronics chain: R11410 PMT -> Amp (UCD) -> DDC10 (U. Rochester)

450

450 Samples

405

Samples

Samples

Calibration With Muons

- Cherenkov in acrylic and water gives absolute photon source!
- Calibrate simulation, work in progress

LS Filling

- Plan to fill w/ pure LAB this or next week
- Dean developing filling procedure
- Useful test for bugs before LZ OD filling

Conclusions

- LS Screener very advanced, excellent progress
- Crucial for LZ project
 - GdLS quality assurance
 - Operational experience
- Possible Material Screener, Economical w/r to HPGe
 - Poor energy resolution compared to HPGe
 - Issue is background rate... can't use LUX Water Shield forever
 - CDMS-II lead shield, owned by UCSB, can be employed
 - Of general interest for DM/Low Background community

Backup Slides

Radioactivity Requirements

Componen	Raw Values (ppt)			Gram	0.1	1% Gd-LS in veto (ppt)			
t	²³⁸ U	²³² Th	⁴⁰ K	¹⁴ C	Liter Gd-LS	²³⁸ U	²³² Th	⁴⁰ K	¹⁴ C
LAB	I	0.5	0.4	1.6×10 ⁻⁶	860	I	0.5	0.4	1.6×10 ⁻⁶
GdCl _{3.} 6H ₂ O	300	1200	20		0.86	0.5	2	0.04	
PPO	20	70	10	4×10 ⁻⁵	3	0.07	0.2	0.04	0.15×10 ⁻⁶
TMHA	20	70	10	6×10 ⁻⁵	3	0.07	0.2	0.04	0.2×10 ⁻⁶
bis-MSB	4000	14000	2000	7×10 ⁻³	0.015	0.07	0.2	0.04	0. 3× 0 ⁻⁶
Total						1.7	3.2	0.6	2.1×10 ⁻⁶
DayaBay						20	4	7	

- Daya Bay activity was from one-pass purification of GdCl₃.6H₂O and PPO
- Daya Bay ⁴⁰K could be from water or contamination.
- ¹⁴C similar to the Borexino measurement 1.9×10⁻⁶ (a puzzle in itself, 5×10⁻⁹ expected); had 1.5 gm/liter of PPO, apparently not the ¹⁴C source. Borexino had 25 keV threshold, saw 1.5 Hz above 60 keV in 4 tonnes.
- Atmospheric ¹⁴C is about I ppt (!!); this level is 0.2 Hz/gram.
- ¹⁴C for LAB, PPO, TMHA come from underground sources.