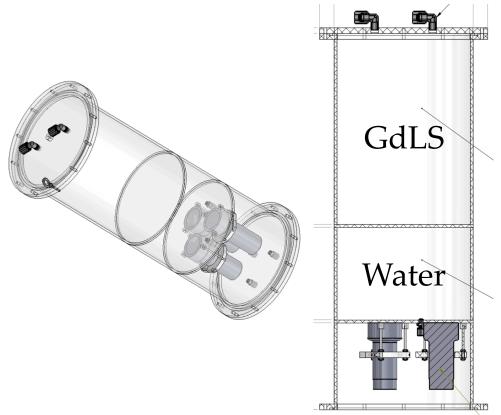
The LS Screener Campaign

Scott Haselschwardt LZ Collaboration Meeting, SLAC March 11, 2016

Motivated By OD Rate

- Dead time requirements for OD constrain rate
- ¹⁴C a main concern
 - LLNL Mass Spec down to 10⁻¹⁵ g/g... requirement/goal is 10⁻¹⁷-10⁻¹⁸ g/g
- Additional verification of others: U, Th, K
- Bonus:
 - Experience with GdLS logistics
 - Z-scan


From Harry: Rate contributions in OD

Component	Rate (Hz)			
Mine/Rock Gammas	91 (200 keV)			
¹⁵² Gd alphas	34 (170 keV)			
Gd-LS	15 (100 keV)			
Other LZ Components	7 (100 keV)			
OD Acrylic	5 (100 keV)			
Total	≈200 (100 keV), ≈130 (200 keV)			

The Screener

- Made of Reynolds UVT acrylic (same as OD)
- ~ 24 kg GdLS

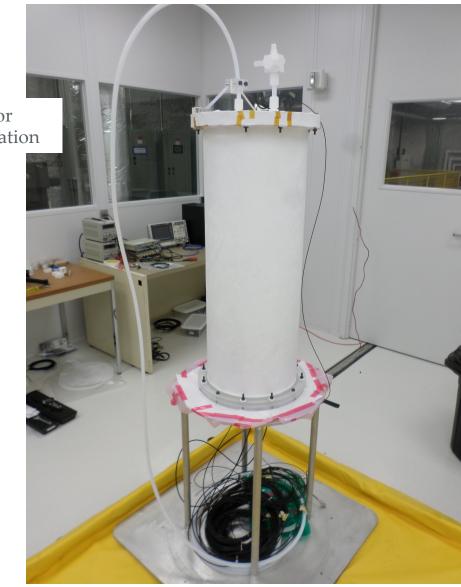
 ~ 1/700 of OD LS
- 14 kg Water Shield
- 3 LZ R11410-20 PMTs
- Wrapped in single layer
 Tyvek
- Goals
 - Rate from GdLS, ¹⁴C
 - Spectral info
 - Operational experience

CAD Model by Susanne Kyre

Underground Commissioning

Water volume full, mounting PMTs

"How many physicists does it take to pump LS?"



Ready for Water Tank Deployment

Filled w/ GdLS and water. PMTs mounted in underground cleanroom:

Teflon tube for thoron calibration

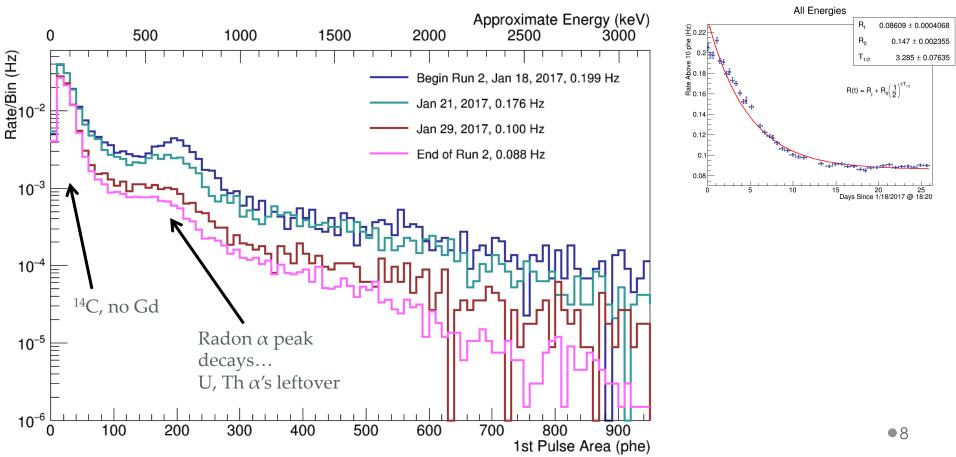
Wrapped in single layer tyvek, ready for deployment:

Water Tank Deployment

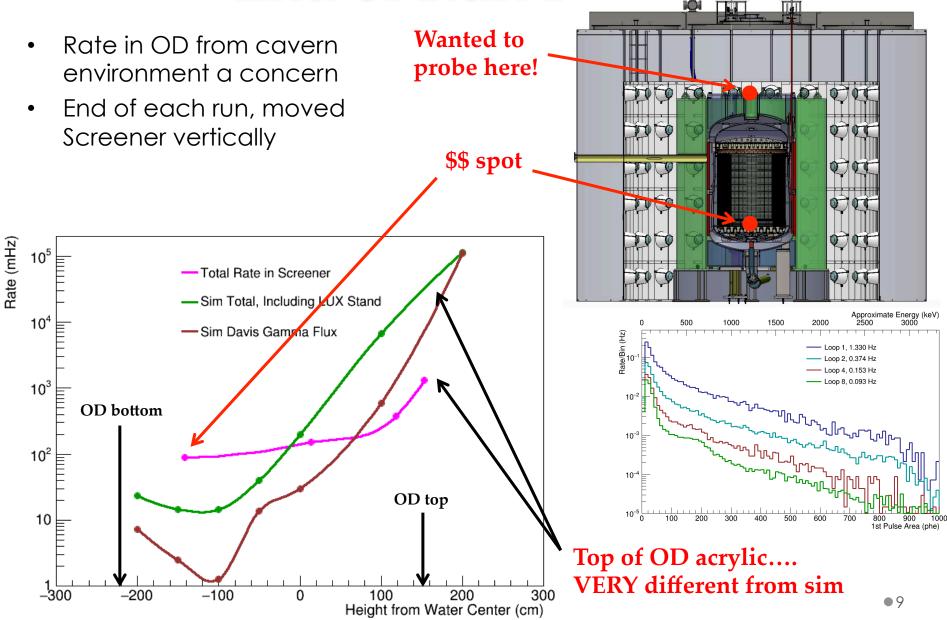
Run 1 – First Data

We see α 's, β 's and Compton deposits from γ 's $R_{100 \text{ keV}} = 154 \text{ mHz}$ $R_{200 \text{ keV}} = 78 \text{ mHz}$ Radon peak, starting rate ~2-3 Hz ۰ Gone after ~ 3 weeks 0.25 phe/keV \rightarrow 24 keV threshold • $R_{100 \text{ keV OD}} \sim 109 \text{ Hz}$ Approximate Energy (keV) 0 500 1000 1500 2000 2500 3000 3500 $R_{200 \text{ keV OD}} \sim 55 \text{ Hz}$ Rate/Bin (Hz) 0 First Data, Nov 16, 2016, 1.59 Hz All Energies Dec 1, 2016, 0.651 Hz 0.2049 ± 0.0005816 10 phe (Hz) 0.6 R Dec 15, 2016, 0.439 Hz 0.4231 ± 0.00344 3.999 ± 0.04229 End of Run 1, 0.215 Hz ate Above 10-2 0.5 $R(t) = R_{t} + R_{0} \left(\frac{1}{2}\right)^{t/T_{12}}$ 10⁻³ 25 30 Since 12/1/2016 @ 18:50 $^{14}C + ^{152}Gd \alpha$ Radon α peak 10^{-4} decays... U, Th α 's leftover 10⁻⁵ 100 200 300 400 500 600 700 800 900•7 1st Pulse Area (phe)

Run 2 – No Gd


 $R_{100 \text{ keV}} = 15 \text{ mHz}$

 $R_{100\;keV\,OD} \sim 11\;Hz$

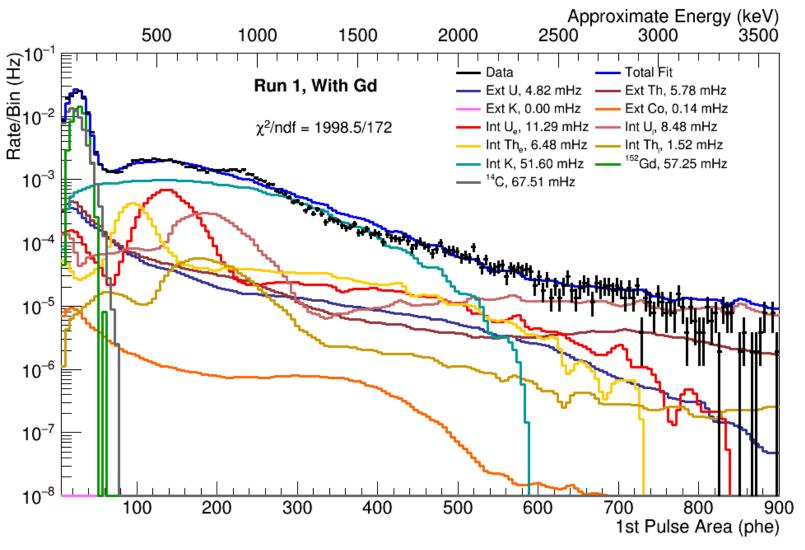

 $R_{200 \text{ keV OD}} \sim 7 \text{ Hz}$

 $R_{200 \text{ keV}} = 9 \text{ mHz}$

- Same cocktail minus Gd
- Less exposure during LS fill
- Again some radon initially, but rate ~0.2 Hz
- Radon gone after ~ 2 weeks
- Higher light yield, ~0.3 phe/keV

End of Run Z-Scan

Background Simulations


- Detailed geometry
- "First pass" round of sim <-> calibration tuning (γ's & α's)
- U, Th, K and Co (when applicable) simulated in:
 - o Tyvek
 - o Ropes
 - Titanium Ballast
 - PMTs and bases
 - PMT mounting structures
 - PMT cabling
 - Flange bolts
 - Acrylic body
 - LUX support stand
- In LS volume: U, Th, K, ¹⁴C and ¹⁵²Gd
- Direct screening results or LZ bkgs table used for normalizations

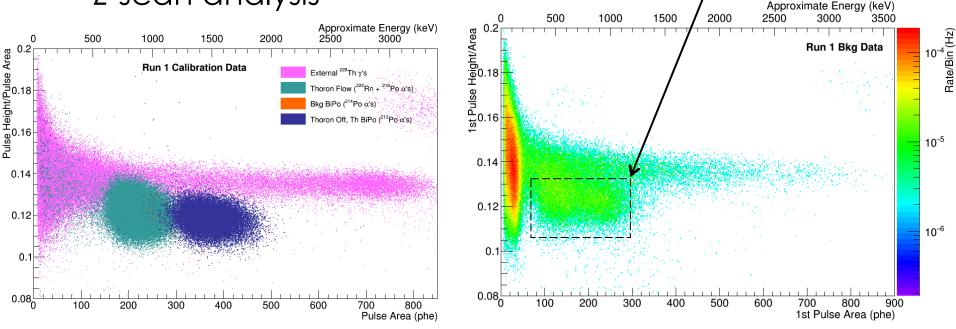
• 10

First Fit to Run 1 Data

- Simulated spectra -> RooFit PDFs
- Grouped by internal or external to LS
- Constraints: External U, Th, K and Co from counting, ¹⁵²Gd rate from known concentration & late chain U,Th from first pass BiPo

Impurity Estimates

Impurity	Level Estimate	Comes From	Goal	Requirement
²³⁸ U	6.5 ± 1.5 ppt early 3.1 ± 0.3 ppt late	Fit early, BiPo late	1.3 ppt	10 ppt
²³² Th	22 ± 5 ppt early 1.3 ± 0.4 ppt late	Fit early, BiPo late	4.5 ppt	20 ppt
40 K	12 ± 1 ppt	Fit	0.8 ppt	3 ppt
$^{14}\mathrm{C}$	$(2.7 \pm 0.1) \ge 10^{-17} \text{ g/g}$	Fit	1.3 x 10 ⁻¹⁷ g/g	1.5 x 10 ⁻¹⁷ g/g


- Close to requirement on ¹⁴C
 - Crude fit to Run 2 within factor of 2

• U, Th okay...

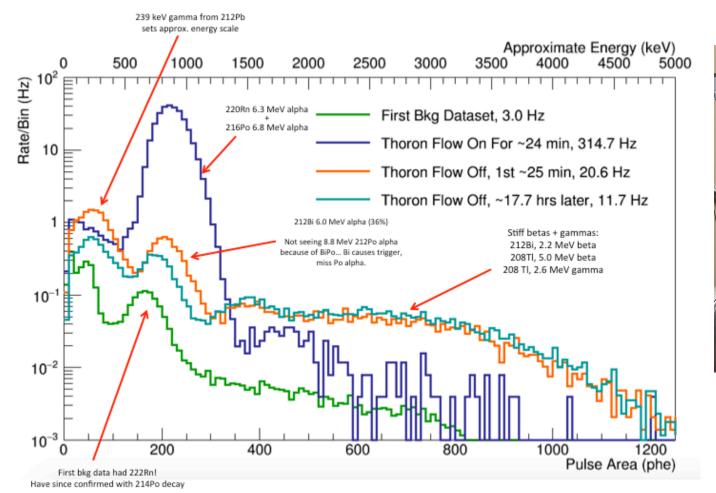
- Run 2 comparison shows GdCl₃ maybe large part here
- HPGe screening underway
- ⁴⁰K a concern...
 - Fit says no external K...curious

Next Steps

- Improving agreement between sim and calibration data
- Pulse shape discrimination
 - Constraint U & Th alphas (early chain)
- GdCl₃ screening w/ HPGe @ SURF
- Run 2 fits
- Z-scan analysis

Mix of U and Th α 's

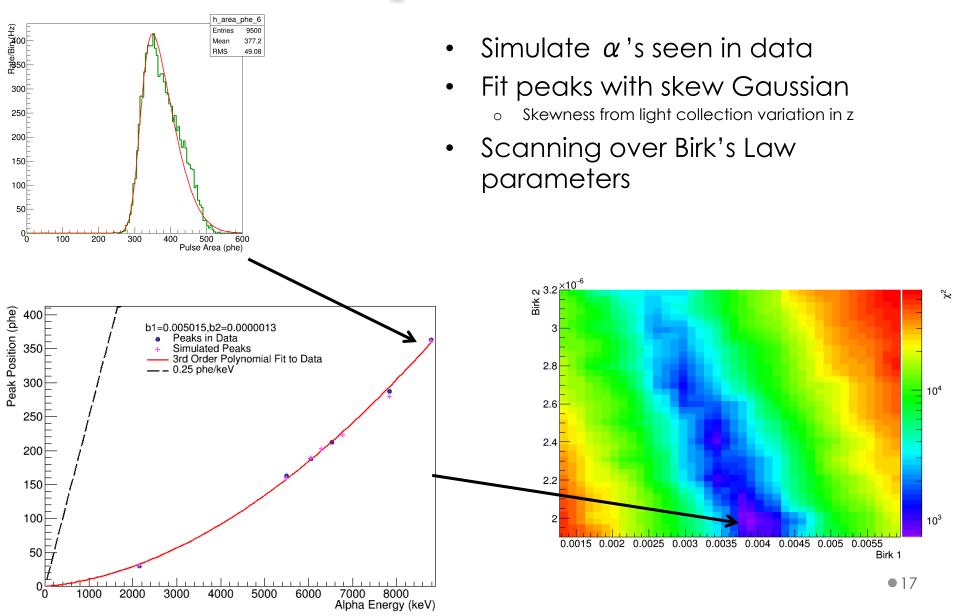
Conclusions


- Screener campaign a success!
- Many lessons learned
- Simulation and data analysis providing useful feedback to OD
- Z-scan constrain Davis Cavern gamma bkg

Thank you to all who helped make this a wonderful project!

Extra Slides

Thoron Calibration


- Bubble N2 past Scott Hertel's ²²⁸Th source into LS
- Vents through concentric tubing to bubbler outside water tank
- Very useful data!

Testing at UCSB

Alpha Scale

1.06.04 - Gd-LS Impurities 2/20/2017

Yellow are measurements (ICPMS/HPGe), blue screener

Component	Raw Values (ppt)			Gram per	0.1% Gd-LS in veto (ppt)				
	²³⁸ U	²³² Th	⁴⁰ K	¹⁴ C	Liter Gd-LS	²³⁸ U	²³² Th	⁴⁰ K	¹⁴ C
LAB	0.004	0.007	0.5	12 × 10-6	860	0.004	0.007	0.5	12 × 10 ⁻⁶
Gd	100	100	52		0.86	0.17	0.17	0.09	
PPO	150	640	27	110 × 10-6	3	0.5	2.2	0.09	0.37 ×10 ⁻⁶
ТМНА	180	650	27	140 × 10 ⁻⁶	3	0.6	2.1	0.09	0.44 ×10 ⁻⁶
bis-MSB	210	190	50	19 × 10 ⁻³	0.015	0.004	0.003	0.001	0.32 ×10 ⁻⁶
Total/Goal					867.2	I.3 (≈3.1BiPo)	4.5	0.8	3 (≈27) × 0 ⁻⁶
Rate (Hz)		l				3.75	3.75	3.75	3.75
Requirement						10	20	3	15 × 10 ⁻⁶
Rate (Hz)		'	<u> </u>			30	17	14	4.3
Daya Bay						20	4	7	

• Daya Bay levels from one-pass purification of Gd and PPO; ⁴⁰K from water or contamination

• ⁸⁵Kr – if like KAMLAND, <20 counts per day