Exploring the TeV Energy Scale at the Large Hadron Collider

Stanford Physics Department Colloquium, Nov 16, 2010

Jeffrey D. Richman
Department of Physics
University of California, Santa Barbara
Lake Geneva (Lac Léman)

Jura Mountains

LHC Ring
C = 27 km (16.9 mi)
$E_{\text{beam}} = 3.5$ to 7 TeV

Ferney-Voltaire, France

Prévessin, France

Super Proton Synchrotron (SPS)

Meyrin, Switzerland

Geneva Airport (Cointrin)

St Genis-Pouilly, France

CERN main campus

CERN: European Organization for Nuclear Research

France

Switzerland
Over Lac Léman (Lake Geneva)
View towards the east (Switzerland)
Over the Rhône River
View towards the west (France)
A few questions about the science...

• Why is the TeV (10^{12} eV) energy scale interesting?
• What is supersymmetry? What is the Higgs boson?
• What does this have to do with cosmology, astrophysics, and dark matter?
• How does the accelerator work? Why are we colliding protons rather than other types of particles?
• What happens when protons collide?
• How do the detectors work? What do they measure?
• How do the results look so far? What would a discovery look like?
Questions about life at the LHC...

• How are the collaborations organized? Is there a lot of politics?
• How did we build the experiments?
• What is it like to be a graduate student? Is it fun?
• What is the connection between the LHC and the early development of the World Wide Web?
• Why am I in my pajamas for meetings every week? How do I hide this from my colleagues?
• What is going to happen in the next couple of years?
• How is the food at CERN? How late is the cafeteria open?
Experimentalists vs. Theorists

• Theorists ask...
 – How will we know if the New Physics is SUSY?
 – How will we determine mass scale...and the full spectrum?
 – How will we determine the underlying Lagrangian?

• What experimenters think about...
 – Is there a leak? Will the trigger really work?
 – How much calorimeter noise is there?
 – How big is the QCD background?
 – How can we be sure that an excess of events is not just due to tails of distributions from SM processes?
LHC ring:
- 2 separate magnetic “highways”; 9593 magnets, incl. 1232 15-meter dipoles.
- Radio-frequency EM cavity devices to accelerate beams (8/beam; 40 MHz)
Beam: “bunch train” w/400 bunches of protons (will increase to 2808 bunches). 1 bunch = 10^{11} protons.

The beam bunches travel at nearly the speed of light (c~7 mph at 7 TeV)
 • arrive at the collision points every 150 ns (25 ns in future)

• Beams make 11,245 turns/second
• Stored for 10 hrs (round trip to Neptune!)
• Designed for 600 M collisions/sec at each experiment.

Stored energy per beam at design is 350 MJ, enough to melt 500 kg of Cu.
LHC Interaction Region

Proton beam

Detector to observe outcome of the proton-proton collisions.

100 m
Inside the LHC Tunnel
Inside the LHC Tunnel

<table>
<thead>
<tr>
<th>Total magnets</th>
<th>9593</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. main dipoles</td>
<td>1232 (L=15 m)</td>
</tr>
<tr>
<td>Num. main quads</td>
<td>392 (L=5 to 7 m)</td>
</tr>
<tr>
<td>RF cavs/beam</td>
<td>8</td>
</tr>
<tr>
<td>Bunches/beam</td>
<td>2808</td>
</tr>
<tr>
<td>Protons/bunch</td>
<td>1.1×10^{11}</td>
</tr>
<tr>
<td>Collisions/sec</td>
<td>600×10^6</td>
</tr>
<tr>
<td>Bunch spacing (min.)</td>
<td>7 m (25 ns)</td>
</tr>
<tr>
<td>Dipole field</td>
<td>8.33 T</td>
</tr>
<tr>
<td>Dipole op. temp.</td>
<td>1.9 K</td>
</tr>
<tr>
<td>Dipole current</td>
<td>11,850 A</td>
</tr>
<tr>
<td>Design luminosity</td>
<td>10^{34} cm$^{-2}$s$^{-1}$</td>
</tr>
</tbody>
</table>
\[B(T) = \frac{p_\perp \text{ (GeV)}}{0.3 \cdot r \text{ (m)}} = \frac{7 \cdot 10^3 \text{ GeV}}{0.3 \cdot (8.6 \cdot 10^3 \text{ m})} \approx 5 \text{ T} \]

Mag. length: 14.3 m
Overall length: 16.8 m
Nb-Ti superconductor
LHC Control Room: Hollywood Version

Angels and Demons, © Sony pictures.
(BTW, they also make computer displays).
LHC Control Room: the real thing
CMS Silicon Tracker Installation: Dec 2007
CMS Detector with Accelerator Beam Pipe
• Largest silicon tracker ever built: \(\sim 200 \, \text{m}^2 \)
• Inner+outer barrel: 4+6 layers; 10-14 points
• 9.3 M strips, pitch 80-180 \(\mu \text{m} \); 97.2% working
• Sensor thickness: 320 \(\mu \text{m} \); 500 \(\mu \text{m} \)
Working on the CMS Silicon Strip Tracker

UCSB silicon-strip module assembly team

Module construction on gantry

Module installation at CERN
Collisions at 7 TeV

Nous avons réussi !

Presque 20 années de travail acharné accompli par des centaines de personnes ont permis au Grand collisionneur de hadrons (LHC) de passer du rêve à la réalité. Le LHC a livré aujourd’hui

March 30, 2010: 1st 7 TeV Collisions

May 1-2, 2010, squeezed, stable beams (30 hrs), $L > 1.1 \times 10^{28} \text{ cm}^{-2}\text{s}^{-1}$

Il y a quelques instants à la CCC
Example: in some SUSY model, the cross section is 40 pb; we would then have

\[N_{\text{events}} = 43.17 \text{ pb}^{-1} \cdot 40 \text{ pb} = 1727 \text{ events produced} \]
A first look inside of the proton

Quarks!

\[r_{proton} \approx 10^{-13} \text{ cm} = 1 \text{ fm} \]

\[A_{geom} \approx \pi r_{proton}^2 \approx 30 \cdot 10^{-27} \text{ cm}^2 = 30 \text{ mb} \]

sets the scale for the total cross section

Rest energy (mass) of proton: 0.9 GeV
Energy of proton in LHC beam: 3,500 GeV
Constituent particles of proton share this energy.

\[p = udu \]
\[n = dud \]
Quarks interact inside a proton

Life is complicated inside a proton...so the collisions can be too!

- **QCD** = quantum chromodynamics: “strong” interactions of quarks & gluons (“color” charge).
- Gluons are the quanta that mediate the strong force, just as photons are the quanta of the EM force.

(Nobel Prize 2004: Gross, Politzer, Wilczek)

Hadron = particle made up of quarks & gluons ➔ “Hadron collider”
Particles of the Standard Model
the stuff we mostly know about…

QUARKS (J=1/2)

- **u** (up)
- **d** (down)
- **c** (charm)
- **s** (strange)
- **t** (top)
- **b** (bottom)

LEPTONS (J=1/2)

- **e\(^{-}\)** (electron)
- **\(\nu_{e}\)** (electron neutrino)
- **\(\mu^{-}\)** (muon)
- **\(\nu_{\mu}\)** (muon neutrino)
- **\(\tau^{-}\)** (tau)
- **\(\nu_{\tau}\)** (tau neutrino)

GAUGE BOSONS (J=1)

- **g** (gluon (8))
- **\(\gamma\)** (photon)
- **Z\(^{0}\)** (Z boson)
- **W\(^{+}\)** (W bosons)
- **W\(^{-}\)** (W bosons)

Higgs boson (J=0)
and vacuum expectation value
The hypothesis of *supersymmetry*

Scalar Quarks "squarks" (J=0)
- \(\tilde{u} \) up squark
- \(\tilde{d} \) down squark
- \(\tilde{c} \) charm squark
- \(\tilde{t} \) top squark

Scalar Leptons "sleptons" (J=0)
- \(\tilde{e}^- \) selectron
- \(\tilde{\nu}_e \) sneutrino
- \(\tilde{\nu}_e \) electron slepton
- \(\tilde{\nu}_\mu \) muon slepton
- \(\tilde{\nu}_\tau \) tau slepton

Gauge Boson Partners (J=1/2)

Strong Int.
- \(\tilde{g} \) gluino (8)

EM Int.
- \(\tilde{\gamma} \) photino

Weak Interactions
- \(\tilde{Z}^0 \) Zino
- \(\tilde{W}^+ \) Wino
- \(\tilde{W}^- \) Higgs partners

Higgsinos (J=1/2)
- \(\tilde{H}^0, \tilde{H}^\pm, \tilde{h}^0, \tilde{A}^0 \)
Matter and anti-matter

For every type of particle, there is a corresponding type of antiparticle. These have all been observed. However, the particle vs. antiparticle content of the universe is extremely asymmetric!

Antiparticles already included or particle is its own antiparticle.

<table>
<thead>
<tr>
<th>Strong Int.</th>
<th>EM Int.</th>
<th>Weak Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>γ</td>
<td>Z^0</td>
</tr>
<tr>
<td>gluon (8)</td>
<td>photon</td>
<td>W^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W^-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Higgs boson</td>
</tr>
</tbody>
</table>
Feynman’s Van: Particle Interactions
Example: production of top quarks

Strong interaction process, but suppressed by $m(t)\approx 175$ GeV.

Gluon-gluon fusion: $\sim 85\%$

Quark-antiquark annihilation: $\sim 15\%$

Unlike photons, which do not carry electric charge, gluons carry color charge and can couple directly to each other.
In 2010, achieved $L_{accel} = 2 \cdot 10^{32}$ cm$^{-2}$ s$^{-1}$

In 2011, may reach $L_{accel} = 5 \cdot 10^{33}$ cm$^{-2}$ s$^{-1}$

Total cross sec. $\sigma_{TOT} \sim 50$ mb

Cross section vs. cm Energy in p + p

$\sigma(pp)$

$\sigma(p - (anti)proton cross sections)$

Rate(process i) $= L_{accel} \cdot \sigma($process i) at $L_{accel} = 10^{33}$ cm$^{-2}$ s$^{-1}$

$\sqrt{s} \equiv CM$ energy

σ_t (t-quark + antitop)

$\sigma_{j\ell}(E_{T,jet} > \sqrt{s}/20)$

$\sigma_{j\ell}(E_{T,jet} > 100$ GeV)

σ_W, σ_Z

W-boson, Z-boson

$\sigma_{j\ell}(E_{T,jet} > \sqrt{s}/4)$

$\sigma_{higgs}(m_H = 120, 200, 500$ GeV)

Higgs boson

High pT di-jets

b-quarks
Strategies for detecting particles

1. Neutrinos: weak interactions only – are escape artists, but their escape can be detected with momentum conservation \(\rightarrow \) “Missing momentum”.

2. Charged leptons: EM and weak interactions only; are your friends (e, mu); but tau decays in flight, so is tricky.

3. Quarks and gluons: strong, EM, & weak interactions form collimated sprays of particles called “jets” as the energy in the color field pair produces q\(\bar{q}\) pairs.

4. Z, W bosons, and many other particles decay rapidly, within the beam pipe. Infer parent particle mass from 4-momenta of daughters: \[m_{\text{parent}}^2 = (p_1 + p_2)^2 \]
A few well known mesons (q\bar{q}) and baryons (qqq):

\[\pi^0 \rightarrow \gamma \gamma \]

\[\Xi^- \rightarrow \Lambda^0 \pi^- \]

\[(\Lambda^0 \rightarrow p \pi^-) \]

\[\Upsilon(nS) \rightarrow \mu^+ \mu^- \]

\[D^* \rightarrow D^0 \pi^- \]

\[(D^0 \rightarrow K^- \pi^+) \]
Particles decaying to $\mu^+\mu^-$ in CMS

$M(\mu^+\mu^-)$

CMS Preliminary

$\sqrt{s} = 7$ TeV, $L_{\text{int}} = 3.1$ pb$^{-1}$
Dijet Event at 7 TeV

Di-jet mass = 764 GeV

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$
Search for $X \rightarrow gg, gq, q\bar{q}$ in di-jet mass distribution

Use two highest pT jets in each event.

Compute di-jet invariant mass:

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

Mass distribution is well described by QCD di-jet production.

With current data, no evidence for particles decaying to dijets.

$0.5 < M(q^*) < 1.58$ TeV excluded

Single-jet trigger, 50 GeV threshold; 99.5% efficient for $M(jj) > 220$ GeV.
Cross Sections for Key SM Processes

\[\sqrt{s} = 7 \text{ TeV} \]

- **W + jets**
 \[W \to \mu \bar{\nu} \]
 \[10440 \pm 520 \text{ pb NNLQ} \]

- **Z + jets**
 \[Z \to \mu^+ \mu^- \]
 \[970 \pm 40 \text{ pb NNLO} \]

- **t \bar{t}**
 \[157.5^{+23.2}_{-24.4} \text{ pb NLO} \]

- **t + X**
 \((t\text{-chan}) \)
 \[63 \text{ pb NLO} \]

- **tW**
 \[10.6 \text{ pb} \]

- **W^+W^-**
 \[43 \text{ pb} \]

- **t + X**
 \((s\text{-chan}) \)
 \[4.6 \text{ pb} \]

- **WZ**
 \[18 \text{ pb} \]

- **ZZ**
 \[5.9 \text{ pb} \]
W boson decaying to electron + neutrino

$p_T(e) = 35.6$ GeV

$\text{MET} = 36.9$ GeV

$m_T = 71.1$ GeV

Reminder: nuclear β-decay

Missing momentum vector (transverse plane only)
CMS Electromagnetic Calorimeter (ECAL)

- Barrel/Endcap: 61,200 / 2×7,324 PbWO$_4$ crystals
- Rad-hard, very fast (80% of light in 25 ns)
- 25.8 and 24.7 X_0; about 1 λ_0 ($X_0 = 0.89$ cm)
- Barrel inner radius: 129 cm (operates in B field!)
- Low light yield (30 γ/MeV); use avalanche photodiodes
- Coverage: $|\eta|<1.479$ (barrel), 1.479<$|\eta|<3.0$ (endcap)

Crystal face: 22 × 22 mm2
Length: 230 mm
Z boson decaying to $\mu^+\mu^-$ in CMS

CMS Experiment at LHC, CERN
Run 135149, Event 125426133
Lumi section: 1345
Sun May 09 2010, 05:24:09 CEST

Muon $p_T = 67.3, 50.6$ GeV/c
Inv. mass = 93.2 GeV/c2
Measurement of Z boson cross section in CMS

$E_T(e) > 20$ GeV

$\int L \, dt = 2.9$ pb$^{-1}$

$N_{\text{sig}}(e^+e^-) = 674$

$N_{\text{back}}(e^+e^-) = 2.8 \pm 0.4$

$p_T(\mu) > 20$ GeV/c

$\int L \, dt = 2.9$ pb$^{-1}$

$N_{\text{sig}}(\mu^+\mu^-) = 950$

$N_{\text{back}}(\mu^+\mu^-) = 3.48 \pm 0.18$

Backgrounds are extremely small – not visible on linear scale!
Measurement of W boson cross section in CMS

Missing momentum vector ➔ measurement of neutrino (transverse to beam only).

Combine missing momentum with muon momentum to estimate parent W boson “transverse mass”

\[
N_{\text{sig}}(e) = 11,895 \pm 115 \\
N_{\text{sig}}(\mu) = 12,257 \pm 111
\]
Measurement of W, Z boson cross sections in CMS

\[\int L \, dt = 2.9 \text{ pb}^{-1} \]

NNLO, MSTW08 68\% CL prediction

\[W \rightarrow \ell \bar{\nu} \]

10.438 ± 0.519 nb

\[W \rightarrow e\bar{\nu}, \quad Z \rightarrow e+e^- \]

10.455 ± 0.416 \text{ stat} ± 0.460 \text{ syst}

\[W \rightarrow \mu\bar{\nu}, \quad Z \rightarrow \mu+\mu^- \]

10.730 ± 0.368 \text{ stat} ± 0.328 \text{ syst}

\[W \rightarrow l\bar{\nu}, \; Z \rightarrow l^+l^- \; (\text{combined}) \]

10.630 ± 0.270 \text{ stat} ± 0.281 \text{ syst}

\[\int L \, dt = 2.9 \text{ pb}^{-1} \]

NNLO, MSTW08 68\% CL prediction

\[W^+ \rightarrow l^+\nu / W^- \rightarrow l^-\bar{\nu} \]

1.435 ± 0.044

\[W \rightarrow e\bar{\nu} \]

1.434 ± 0.029 \text{ stat} ± 0.032 \text{ syst}

\[W \rightarrow \mu\bar{\nu} \]

1.433 ± 0.026 \text{ stat} ± 0.054 \text{ syst}

\[W \rightarrow l\bar{\nu} \; (\text{combined}) \]

1.433 ± 0.020 \text{ stat} ± 0.050 \text{ syst}
A peek at the full 35 pb\(^{-1}\) data sample

\[\int L \, dt = 35 \text{ pb}^{-1} \]

CMS preliminary 2010

\[\sqrt{s} = 7 \text{ TeV} \]

\[M(\mu^+\mu^-) \text{ [GeV]} \]

\[M_T \text{ [GeV]} \]

- Data
- \(Z^0 \rightarrow \mu^+\mu^- \)
- W \rightarrow \mu\nu
- EWK+tt
- QCD
$pp \rightarrow Z (\rightarrow \mu^+\mu^-) + Z (\rightarrow \mu^+\mu^-)$

$\mu_0 + \mu_1: 92.15 \text{ GeV}$
$\mu_2 + \mu_3: 92.24 \text{ GeV}$
$\mu_0 + \mu_2: 70.12 \text{ GeV}$
$\mu_3 + \mu_1: 83.1 \text{ GeV}$
$pp \rightarrow Z (\rightarrow \mu^+\mu^-) + Z (\rightarrow \mu^+\mu^-)$

(animation of real event)
Observation of $pp \rightarrow t\bar{t}$

Candidate event for process

$pp \rightarrow t\bar{t}$

$t \rightarrow bW^+; \ W^+ \rightarrow e^+\nu_e$

$\bar{t} \rightarrow \bar{b}W^-; \ W^- \rightarrow q_1\bar{q}_2$

Jet $p_T = 162.9$ GeV/c, $\eta = -0.06$, $\varphi = 1.54$

Jet $p_T = 69.9$ GeV/c, $\eta = 1.25$, $\varphi = 1.02$

Jet $p_T = 34.5$ GeV/c, $\eta = 1.18$, $\varphi = 0.43$

Electron $E_T = 43.6$ GeV, $\eta = -0.29$, $\varphi = -1.77$

Jet $p_T = 36.9$ GeV/c, $\eta = 0.76$, $\varphi = -1.68$

$E_T = 105.3$ GeV, $\varphi = -2.26$

Missing momentum vector from neutrino
Measurement of the $t\bar{t}$ Cross Section

$$t \to bW^+; \quad W^+ \to \ell^+ \nu_\ell$$

$$\bar{t} \to \bar{b}W^-; \quad W^- \to \ell^- \bar{\nu}_\ell$$

$$\sigma(pp \to t\bar{t}) = [194 \pm 72 \text{ (stat)} \pm 24 \text{ (sys)} \pm 21 \text{ (lumi)}] \text{ pb}$$

http://arxiv.org/abs/1010.5994

11 events observed;
est. background 2.1 ± 1.0 event

PRELIMINARY
b-quark identification using displaced decay vertices

Secondary vertices

- top-right:
 3D flight distance (value / significance) = 6.2 mm / 43
 \(m_{sv} = 2.9 \text{ GeV}, \ p_{T} = 25.7 \text{ GeV}, \ \sqrt{#} / \text{ndof} = 6.3 / 5 \)

- bottom left:
 3D flight distance (value / significance) = 8.6mm / 55
 \(m_{sv} = 3.1 \text{ GeV}, \ p_{T} = 17.2 \text{ GeV}, \ \sqrt{#} / \text{ndof} = 15.9 / 3 \)
The dark matter revolution

Nicolaus Copernicus (1473-1543): heliocentric model

Vera Rubin (1928-): dark matter in galaxies

We aren’t at the center of the solar system (or anything else), and we aren’t made up of the dominant form of matter...
Cross Sections for SM vs. Low-mass SUSY benchmark points

<table>
<thead>
<tr>
<th>Process</th>
<th>NLO Cross Section (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tt</td>
<td>157.5</td>
</tr>
<tr>
<td>$t + X$ (t-chan)</td>
<td>63</td>
</tr>
<tr>
<td>tW</td>
<td>10.6</td>
</tr>
<tr>
<td>W^+W^-</td>
<td>43</td>
</tr>
<tr>
<td>WZ</td>
<td>18</td>
</tr>
<tr>
<td>ZZ</td>
<td>5.9</td>
</tr>
<tr>
<td>LM0</td>
<td>39</td>
</tr>
<tr>
<td>LM1</td>
<td>4.9</td>
</tr>
<tr>
<td>LM3</td>
<td>3.4</td>
</tr>
<tr>
<td>LM9</td>
<td>7.1</td>
</tr>
</tbody>
</table>
SUSY Production Mechanisms

Strong production usually dominates SUSY cross sections.

Fraction of production according to initial SUSY particle pair (CMS benchmark models).

Feynman diagrams courtesy H. Baer
A new spectroscopy?

Many SUSY signatures give very large (>200 GeV) missing momentum due to production of two LSPs.

Broad range of signatures, with leptons, photons, b-quarks,...

Currently carrying out full range of searches.

Lightest supersymmetric particle → DARK MATTER?
Typical decay patterns in LM0

\[\tilde{g} \rightarrow \tilde{t}_1 \tilde{t} + \text{c.c.} \ (46\%) \]

\[\tilde{b}_1 \rightarrow \tilde{t}_1 W^- \ (43\%) \]

\[\tilde{t}_1 \rightarrow \tilde{\chi}_1^+ W^- \ (100\%) \]

\[\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \]

\[\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 u d, \tilde{\chi}_1^0 c s \ (33\% \ each) \]

\[\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^- \nu_e, \tilde{\chi}_1^0 \mu^- \nu_\mu \ (12\% \ each) \]
Higgs branching fractions as a function of $m(H)$.

<table>
<thead>
<tr>
<th>Channels included</th>
<th>Higgs mass range used in analyses (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>115-150</td>
</tr>
<tr>
<td>VBF $H \rightarrow \tau \tau$</td>
<td>115-145</td>
</tr>
<tr>
<td>VH, $H \rightarrow bb$ (highly boosted)</td>
<td>115-125</td>
</tr>
<tr>
<td>VH, $H \rightarrow WW \rightarrow lvjj$</td>
<td>130-200</td>
</tr>
<tr>
<td>$H \rightarrow WW \rightarrow 2l2v + 0/1$ jets</td>
<td>120-600</td>
</tr>
<tr>
<td>VBF $H \rightarrow WW \rightarrow 2l2v$</td>
<td>130-500</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 4l$</td>
<td>120-600</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2l2v$</td>
<td>200-600</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2l2b$</td>
<td>300-600</td>
</tr>
</tbody>
</table>
CMS Higgs Sensitivity (I)

Projected 95% CL Limit on σ/σ_{SM}

5 fb$^{-1}$ @ 8 TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
CMS Preliminary: Oct 2010

Projected Significance of Observation

5 fb$^{-1}$ @ 8 TeV

CMS Higgs Sensitivity (II)
Information Management: A Proposal

Tim Berners-Lee, CERN
March 1989, May 1990

This proposal concerns the management of general information about accelerators and experiments at CERN. It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system.

Many of the discussions of the future at CERN and the LHC era end with the question - "Yes, but how will we ever keep track of such a large project?" This proposal provides an answer to such questions. Firstly, it discusses the problem of information access at CERN. Then, it introduces the idea of linked information systems, and compares them with less flexible ways of finding information.
Berners-Lee proposed the WWW in March 1989 while working at CERN.
Conclusions/Prospects

• The LHC is working and has achieved its luminosity goal for this run ($10^{32} \text{ cm}^{-2}\text{s}^{-1}$). Next year the luminosity will be much higher.

• We have observed and measured key Standard Model benchmark processes: W, Z, $t\bar{t}$, + many others.

• With the current data sample, we will surpass the Tevatron in sensitivity for many new physics scenarios, including SUSY.

• Proton running resumes starting in Feb; high expectations for accumulating well over 1 fb$^{-1}$ in 2011. This is the start of a 15-20 year physics program.