Searches for supersymmetry from the CMS experiment

West Coast LHC Theory Meeting, KITP, April 15, 2011

Jeffrey D. Richman Department of Physics University of California, Santa Barbara

Outline

- Perspective, Strategy, and Signatures
- Overview of SM backgrounds; comments on methods
- Hadronic searches: Jets + MET
- Leptonic searches: Jets + MET + lepton(s)
- Searches with photons
- Conclusions

Not covering "exotic" models, e.g., stopped-gluino search: http://arxiv.org/abs/1011.5861 PRL 106, 011801 (2011)

All public CMS physics results available from https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Experimentalists vs. Theorists

• Theorists ask...

- How will we know if the New Physics is SUSY?
- How will we determine the mass scale...and then the full spectrum?
- How will we determine the underlying Lagrangian?
- Experimentalists think about the truly fundamental questions.
 - Is there a leak? Will the trigger really work?
 - How much calorimeter noise is there?
 - How can we be sure that an excess of events is not just due to tails of distributions from SM processes?

CMS Silicon Tracker Installation: Dec 2007

Collisions at 7 TeV

http://cdsweb.cern.ch/journal/CERNBulletin/2010/14/News%20Articles/1246424?In=fr http://press.web.cern.ch/press/PressReleases/Releases2010/PR07.10E.html

Nous avons réussi !

Presque 20 années de travail acharné accompli par des centaines de personnes ont permis au Grand collisionneur de hadrons (LHC) de passer du rêve à la réalité. Le LHC a livré aujourd'hui

March 30, 2010: 1st 7 TeV Collisions

Il y a quelques instants à la CCC

May 1-2, 2010, squeezed, stable beams (30 hrs), L>1.1× 10²⁸ cm⁻²s⁻¹

http://cdsweb_cern.ch/journal/CERNBulletin/2010/18/News%20Articles/1262593?In=en

CMS Integrated Luminosity vs. Time

36 pb⁻¹ validated high quality

In some low mass SUSY model, the cross section is 40 pb; we would then have

 $N_{events} = 36 \text{ pb}^{-1} \cdot 40 \text{ pb} \simeq 1400 \text{ (produced)}$

Cross Sections for SM vs. low-mass SUSY benchmark points $\sigma(pb) \ t\overline{t}$

CMS SUSY signatures & searches

Jets + MET	1 lepton	2 leptons:	2 leptons	≥3 leptons	2 photons	1 photon +
	+ jets	opp. sign	same sign		+ MET	1 lepton+
	+ MET	+ MET				MET

- Strong emphasis on data-driven background determination.
 - No narrow peaks: extreme tails of kinematic distribs.
 - Control samples in data → background
 - Is the control sample (SM + X) understood?
- Not simple; may rely on assumptions.
 - test extensively with MC samples
 - use multiple data-driven methods as crosschecks
 - critical for discovery

MET, MHT, and HT

- MET: reconstructed from calorimeter towers (ECAL+HCAL)
- MHT: reconstructed from jets above a threshold
- Jet threshold: 20 GeV 50 GeV

$MET(\mathbb{Z}_T)$ in the SM and SUSY

- Real MET: LSP, W + jets, ttbar events with high pT neutrino
- MET can also arise from jet mismeas., heavy-quark decay
- Large MET in W + jets, ttbar events is usually real
- Typical: MET>100 GeV ("loose") or MET>200 GeV ("tight")

Overview of SM backgrounds

Background	Comments	Hadronic searches	Leptonic searches
QCD multijets	 Largest cross section Kinematics not well understood Data-driven methods required. Reduced by Njets>2,>3, HT, MET, jet threshold cut, Δφ(MET,jet) 	After cuts, usually not the largest background, but it's the one that keeps you awake at night. Data-driven methods challenging but essential to quantify jet-mismeas.	Lepton isolation provides powerful rejection and effective way to estimate background from b →lepton or "jets faking leptons"
W + jets, Z/Drell Yan +jets	 Large cross sections; can produce real MET High pT W with W→τυ 	Background from τ , lost leptons, or leptons below veto threshold $Z \rightarrow v\overline{v}$ + jets (irreducible)	 W+jets impt in 1 lep Z+ jets impt in Z HMET Fall rapidly w/ n jets
ttbar 🕇 Data driv	Almost like SUSY en	Lost lepton backgrounds	Dominant background
Other electroweak: single top, WW, ZZ,	So far not a problem; sub-sub dominant Rely on MC to show is (usually) negligible.	not a problem for now	not a problem for now

W boson decaying to electron + neutrino

Measurement of the W, Z cross sections

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Measurement of W, Z boson cross sections in CMS

N(jets) in W + jets, Z + jets (E_T >30 GeV)

CMS

W, Z: number of jets (E_T>30 GeV)

Observation of $pp \rightarrow t\bar{t}$

Signals for tt production

Single-lepton channel $t \rightarrow bW^+; W^+ \rightarrow \mu^+ v_\mu$ $\overline{t} \rightarrow \overline{b}W^-; W^- \rightarrow q_1 \overline{q}_2$

Di-lepton channel $t \rightarrow bW^+; W^+ \rightarrow \ell^+ \nu_{\ell}$ $\overline{t} \to \overline{b}W^-; W^- \to \ell^- \overline{\nu}_{\ell}$ at least 1 b-tagged jet required Events Data CMS Preliminary t signal 35.9 pb⁻¹ at √s=7 TeV DY prediction Events with ee/µµ/eµ Ζ/γ*→τ⁺τ΄ 80 Single top 70 vv Non-W/Z prediction 60 Bckg. uncertainty 50 40 30 20 E 10 E 0 1 2 3 ≥4

Number of jets

Summary of tt cross section results

CMS Preliminary,√s=7 TeV

tt cross section results are in good agreement with Standard Model prediction.

Tradeoffs in background determinations

- A difficulty with data-driven methods: how well is composition of control sample understood?
- Tradeoff with tighter selection cuts:
 - search becomes less general
 - background methods become more reliable
- Sometimes need dedicated method for a distinct part of phase space, e.g., dijets + MET.
- Theoretical understanding of SM processes is extremely valuable and could play a key part in a discovery.

Understanding W polarization in ttbar

Helicity fractions of W bosons from top quark decays at NNLO in QCD

Andrzej Czarnecki^{*}

Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada and CERN Theory Division, CH-1211 Geneva 23, Switzerland

Jürgen G. Körner[†]

Institut für Physik, Universität Mainz, 55099 Mainz, Germany

Jan H. Piclum[‡]

Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada (Dated: May 18, 2010)

Decay rates of unpolarized top quarks into longitudinally and transversally polarized W bosons are calculated to second order in the strong coupling constant α_s . Including the finite bottom quark mass and electroweak effects, the Standard Model predictions for the W boson helicity fractions are $\mathcal{F}_L = 0.687(5), \mathcal{F}_+ = 0.0017(1), \text{ and } \mathcal{F}_- = 0.311(5).$

The uncertainties associated with this aspect of ttbar are essentially negligible. This is extremely helpful.

Issues with uncertainties

- Quantifying the uncertainties is the foundation of the measurement.
- If the systematic uncertainties are comparable to the statistical uncertainties, it can be very difficult to understand the meaning of " 5σ ", which corresponds to a probability of $\approx 10^{-7}$.
- Many systematic errors are rough estimates and do not have a well-defined probability content.
- If a relative systematic error is large (e.g., on QCD), it is often best to cut tightly so impact is small.
- Sometimes a data-driven method allows one to convert a systematic error into a statistical error. This is good!

Hadronic Searches (Jets + MET)

Jets + MET	1 lepto + jets + ME	on 2 lep s opp T + N	otons: . sign /IET	2 lep same	otons e sign	≥3 leptons	2 photons + MET	1 photon + 1 lepton+ MET
		Jets	+ MET	ſ				
		α⊤ N includes	/lethod dijet s	l each				
		Generic search (MHT)						
		Razor variable analysis						
		α⊤+b-tags						

Hadronic search with α_{T}

http://arxiv.org/abs/1101.1628

Trigger	Indiv. jet req.	Jets	Leading jet	Vetos (event vetoed if)	HT & MHT	α _τ
HT ^{trigger} >150 GeV at HLT	ET>50, ŋ <3	≥2 jets, ET>100 GeV	n <2.5, ET>100	isolated photon (pT>25) isolated leptons (pT>10), jets ET>50, η >3	HT >350 GeV MHT/MET >1.25	0.55

Generalize to multi-jet case by forming 2 pseudo-jets.

Hadronic search with α_T

QCD multijets from Pythia6.4 (tune Z2).

W,Z + jets, ttbar from MADGRAPH.

Overall exponential falloff except for ttbar.

Require HT> 350 GeV.

Data and MC in rough agreement over 6 orders of magnitude.

Don't use MC for background predictions...

Hadronic search: α_T for 2-jet sample

Hadronic search: α_T for ≥ 3 jet sample

Behavior: for QCD events, the relative MET measurement improves with increasing HT. Note jet thresholds for lower HT bins are lowered to equalize phase space.

α_T method: background from HT extrap.

Method	Yield (events)	Comments
R(αT) extrap in HT; multiply by N(αT<0.55) in HT>350 GeV bin	$9.4_{-4.0}^{+4.8}$ (stat) ± 1.0 (sys)	Sum over all backgrounds
W + jets control sample to estimate W, ttbar	$6.1_{-1.9}^{+2.8}$ (stat) ± 1.8 (sys)	
Gamma + jets control sample to determine Z→vv + jets	$4.4_{-1.6}^{+2.3}$ (stat) ± 1.8 (sys)	
Sum of W + jets, ttbar, and Z→vv + jets	$10.5^{+3.6}_{-2.5}$	consistent with HT extrap method
Observed number of events in signal region	13	Observed yield consistent with backgnd predictions.

LM1 channel	Yield for 35 pb ⁻¹	Total Efficiency (%)	Eff. for signature (%)
ilde q ilde q	9.7 ± 0.1	16.0 ± 0.1	22.2 ± 0.4
ilde q ilde g	8.8 ± 0.1	14.4 ± 0.1	23.0 ± 0.5
$\widetilde{g}\widetilde{g}$	0.71 ± 0.02	12.0 ± 0.4	22.5 ± 2.0

α_T method: M_{eff} distribution

α_{T} method: CMSSM exclusion (95% C.L.)

Hadronic SUSY Search: jets + MHT

Baseline selection

http://cdsweb.cern.ch/record/1343076?In=en

Trigger	Jets	Vetos (event vetoed if)	HT	MHT
HT ^{trigger} >150 GeV at HLT	≥3 jets, ET>50 η <2.5	isolated leptons (pT>10), jets ET>50, η >3	HT>300 using jets with pT>50, η<2.5	MHT >150 GeV using jets with pT>30, η <5

Jets + MHT search: $Z \rightarrow v\bar{v}$

Irreducible background

Obvious control sample: sample: replace leptons by missing momentum **Baseline selection:** in itself... $2 Z \rightarrow ee evts$, $1 Z \rightarrow \mu \mu \text{ evts}$ Scale for BF(vv)/(BF(II)=6, effic, accept $N(Z \rightarrow v\overline{v}) = 17^{+13}_{-10}$

Non-obvious control

replace Z by high pT, isolated photon

a major measurement

Photon + jet event

QCD background prediction

- Use control samples in data to measure jet resolution functions
 - photon + jets
 - dijets

$$\mathbf{MHT} = -\sum_{j \text{ ets } j} \vec{p}_T^{j}$$

- Apply re-balancing procedure to data
 - adjust jet Et values to obtain overall zero MHT.
 - events with real MHT (ttbar, W, BSM) are included.
- Data events are then re-smeared using resolution function.
- Method is jet-based, so predicts MHT, not MET.

Jets + MHT search: results

High MHT selection: Baseline + MHT>250 GeV QCD $0.16 \pm 0.10, 0.4 \pm 0.3$ $t\bar{t} / W \rightarrow Z \rightarrow V\bar{V}$ $(\tau_{hadr} + X)$ 7.1±2.2 6.7 ± 2.1 $t\overline{t} / W \rightarrow$ $(e,\mu+X)$ 4.8 ± 1.9

High HT selection: Baseline + HT>500 GeV

	High MHT Selection	High HT Selection
Total predicted	18.8 ± 3.5	43.8 ± 9.2
Observed	15	40

Jets + MHT search: an interesting event

CMS Experiment at LHC, CERN Data recorded: Tue Oct 26 07:13:54 2010 CEST Run/Event: 148953 / 70626194 Lumi section: 49

MHT = 693 GeV Jet pT: 468 GeV HT = 1132 GeV Meff = 1.83 TeV

> No jet invariant mass combinations match W, t masses

Jets + MHT search: CMSSM constraints

Signal acceptance: 10% – 20% for high MHT selection. Contours: envelope of best sensitivity of both the HT and MHT selection. (Statistics: CLs method)

Simplified models: selection efficiency

CMS

Simplified models: cross section limits on combined CMS hadronic searches

Minimum 95% C.L. upper limit on the production cross section from three hadronic analyses: α T, jets + MHT, razor.

Hadronic search with "Razor" variables

C. Rogan http://arxiv.org/pdf/1006.2727v1

Main idea: search for pair production of heavy objects near threshold. Arrange all reco'd objects into hemispheres, with 3 momenta \vec{p} and \vec{q}

Razor analysis: results

M_R distribution for QCD background falls exponentially, with slope determined by cut on R. Other backgrounds have similar behavior. Background shapes & norm from control samples.

R>0.5, M_R >500 GeV: predict 5.5 ±1.4 events, observe 7 events.

Razor analysis: CMSSM exclusion curves

Single lepton + jets + MET search

Trigger	Jets	Leptons	HT	MET
Single mu (pT>5 GeV)+ HTtrig>70 GeV, pT(e)>17 GeV	≥4 jets, pT>30 η <2.4	pT(e)>20 GeV pT(mu)>20 GeV isolated, only 1 lepton/event	HT>300 GeV using jets with pT>20 GeV, η <2.4	MET >250 GeV

Distributions after baseline selection (no offline HT cut and only MET>25 GeV)

Lepton-spectrum method

- For dominant backgrounds (ttbar & W + jets), the lepton and neutrino are produced together in W decay. (Identical boosts to lab frame.)
- If we control polarization effects, can use lepton spectrum to predict the MET spectrum for background.

W polarization in ttbar

- SM background is dominated by ttbar and W+jets events
- MET distribution is mostly due to real MET from neutrinos, which are produced together in two-body W decay.

Single lepton + jets + MET: results

- Predicted single-lepton spectrum (with smearing using jet resolution templates from data).
- Also measure dilepton feed-down and ttbar →I +tau,
 W→tau→lep, and QCD from control samples.

Sample	μ	е
Predicted SM 1 lepton	1.7 ± 1.4	1.2 ± 1.0
Predicted SM dilepton	$0.0^{+0.8}_{-0.0}$	$0.0^{+0.6}_{-0.0}$
Predicted single tau	0.29 ± 0.22	$0.32^{+0.38}_{-0.32}$
Predicted QCD	0.09 ± 0.09	$0.0^{+0.16}_{-0.0}$
Total predicted SM	2.1 ± 1.5	1.5 ± 1.2
Observed signal region	2	0

Dilepton search: opposite sign

Dilepton search: same sign

- Classic SUSY signature: very low SM background due to suppression of dilepton ttbar with 2 primary leptons.
- Background from ttbar with 1 primary, 1 secondary lepton
- In electron channel, can also have charge misID resulting from hard bremsstrahlung + conversion in the detector.

Can go to very low MET. ...no signal observed in any channel

Same-sign dilepton search: results

Search Region	ee	$\mu\mu$	еµ	total	95% C.L. UL Yield
Lepton Trigger					
$E_T^{ m miss} > 80~{ m GeV}$					
MC	0.05	0.07	0.23	0.35	
BG predicted	$0.23^{+0.35}_{-0.23}$	$0.23^{+0.26}_{-0.23}$	0.74 ± 0.55	1.2 ± 0.8	
observed	0	0	0	0	3.1
$H_T > 200 \text{ GeV}$					
MC	0.04	0.10	0.17	0.32	
BG predicted	0.71 ± 0.58	$0.01^{+0.24}_{-0.01}$	$0.25^{+0.27}_{-0.25}$	0.97 ± 0.74	
observed	0	0	1	1	4.3
H_T Trigger					
$Low-p_T$					\sim
MC	0.05	0.16	0.21	0.41	
BG predicted	0.10 ± 0.07	0.30 ± 0.13	0.40 ± 0.18	0.80 ± 0.31	
observed	1	0	0	1	4.4
	$e \tau_h$	$\mu \tau_h$	$\tau_h \tau_h$	total	95% C.L. UL Yield
τ_h enriched		1		\leq	\sim
MC	0.36	0.47	0.08	0.91	
BG predicted	0.10 ± 0.10	-0.17 ± 0.14	0.02 ± 0.01	0.29 ± 0.17	
observed	0	0	0	0	3.4

Summary of CMSSM constraints

2 photons + MET + jet(s) search

http://arxiv.org/abs/1103.0953

Trigger	Jets	Photons	MET
Single photon triggers (>99% efficient for signal)	≥1 jet pT>30, η <2.6, sep from both γ's with ΔR>0.9	2 isolated γ's η <1.4, pT>30 GeV	MET >50 GeV

- 1. QCD (real or fake γ 's) \rightarrow Fake MET (dominant bkgrnd)
 - MET shape determined by resolution on jet recoil system
 - Measure MET shape using 2 control samples (Z→ee + jets & 2 Fake γ + jets)
 - Re-weight MET from control region according to $pT(\gamma\gamma)$
 - Normalize to the low MET region in yy sample.
- 2. <u>EWK: W (e v) + γ /fake γ ; e fakes $\gamma \rightarrow$ Real MET</u>
 - Reweight eq control sample using measured $f(e \rightarrow q)$

http://arxiv.org/abs/1103.0953

Oriented towards General Gauge Mediated (GGM) SUSY models.

Observe excess over QCD background from SM processes with real MET.

2 photons + MET + jet(s) constraints

Conclusions/Prospects

- With 36 pb-1 at 7 TeV, we have surpassed the Tevatron sensitivity for SUSY searches.
- A broad range of SUSY analyses have been commissioned on 2010 data.
- Strategy is to use determine backgrounds using datadriven methods, with multiple methods for crosschecks.
- Explore as many distinct kinematic regions as possible.
- Hopes are high for 1 fb⁻¹ by the summer. Should substantially extend our mass reach for SUSY.

Backup slides

A new spectroscopy?

 Key element of SUSY searches: large (>200 GeV) missing
 momentum due to production of two LSPs.

 Broad range of signatures, with leptons, photons, b-quarks,...+ missing transerse momentum

Cross section vs. cm Energy in p + p

Z boson decaying to $\mu^+\mu^-$ in CMS

CMS Experiment at LHC, CERN Run 135149, Event 125426133 Lumi section: 1345 Sun May 09 2010, 05:24:09 CEST

Muon p_T = 67.3, 50.6 GeV/c Inv. mass = 93.2 GeV/c²

