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Abstract:  

An experiment designed to determine the quadratic drag coefficient in air acting on a spherical 

object.  Carried out by using a simple pendulum and a motion detector to record the velocity of 

the pendulums counterweight.  The experiment yielded 𝛾 = (0.212 ± 0.049)
𝑁𝑠2

𝑚4 , which was 

(15 ± 11.1)% less than the cited1 quadratic drag coefficient  𝛾𝑎𝑖𝑟 = 0.250
𝑁𝑠2

𝑚4
.  
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Introduction 

When an object moves through a viscous medium, it experiences a retarding force.  This 

retarding force is a nonconservative force known as the drag force.  The drag force, primarily, 

has two components known as linear drag and quadratic drag.  Objects that have a low cross-

sectional area in the direction of motion (v) and a long, slender shape tend to be dominated by 

the linear drag force2.  Conversely, objects that have a large cross-sectional area in its direction 

of motion tend to be dominated by the quadratic drag force.  The quadratic drag force (QDF) 

retards the objects movement due the objects displacement of the viscous medium (air, in this 

case).   The QDF is proportional to the objects velocity squared, 

𝒇𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 𝑐𝒗2,    where   𝑐 = 𝛾𝐷2   (1) (for a spherical object) 

where D is the diameter of the object and 𝛾 is the coefficient of quadratic drag.   

Incorporating the QDF into the equations of motion, we have: 

𝑚𝒗 = 𝑚𝒂− 𝛾𝐷2𝒗2   (2) 

We can see this is a nonlinear differential equation.  Equation 2 cannot be solved in terms of 

elementary functions when v is coupled in a two dimensional manner, vx and vy.  However, 

when vx and vy we can solve the equation of motions in terms of elementary functions.  In 

uncoupling dimensional dependence, it simplifies the system greatly.  If we consider a real 

system, such as this experiment using a pendulum with a sphere attached as the 

counterweight, we can isolate our measurements to where the system is uncoupled and only 

consider the horizontal motion.  In doing so, we find the equations of motion to follow 

𝑚𝑣 𝑥 = −𝛾𝐷2𝑣𝑥
2 (3) 

which states the only acting force on the system at that specific moment is the QDF, the force 

of interest.   

Materials and Methods 
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The purpose of this experiment was to 

measure this coefficient of quadratic 

drag in air, 𝛾. This was accomplished 

by setting up a simple pendulum 

system as depicted in Figure 1.  The 

pivot of the pendulum was simply the 

string which held the counterweight, 

tired around a metal bar fixed to the 

stand of the pendulum. The 

counterweight was a rubber bouncy 

ball, with a measured mass of 

(0.02464 ± 0.0001) kg and diameter 

(0.03705  ± .0001) meters, which was 

taped to the string of the pendulum.  

The pendulum was set to have a near 

constant release angle of 12°, so using 

a small angle approximation in this 

system would be valid.  This was done 

by measuring the length of the string 

and it's horizontal maximum value, 

such that 
𝑥

𝐿
= 𝜃 ≈ sin 𝜃 = 12°.  A 

protruding metal bar was attached to 

the stand so that a fixed height was 

established, and a mark on the bar where the string should be touching for a constant release 

position.  Also, attached to the counterweight was a small string "tail" that was used to pull the 

counterweight back, minimizing shake during release.  Below the path of the pendulums arc 

was a rule that was taped to the table top, to visually ensure there was little to no sway.  If 

there appeared to be large amounts of sway  of the pendulums arc in a specific run, it was 

noted and that data was not used in the final analysis.  At one end of the arc, a sonic motion 

detector was stationed, recording position and velocity simultaneously (PASCO Xplorer GLX).  

The data recorded by the motion detector was used to fit a decaying exponential function to 

the damping envelope of the velocity.  This gave an equation for the exponentially decaying 

amplitude of the counterweights velocity.  A derivative of this velocity gave the acceleration at 

the bottom point of the pendulum, where all of the energy was in the form of kinetic energy 

and the force due to gravity need not be considered since all motion at this point was 

horizontal.  Deriving both a(t) and v(t) allows one to solve for 𝛾 as a function of time 

𝛾(𝑡)  = −
𝑚𝑣 𝑥 (𝑡)

𝐷2𝑣𝑥2(𝑡)
  (4). 

Figure 1- Experiment Setup 



The data was fitted using PASCO's DataStudio.  The author used a built in function found in 

DataStudio to obtain the points of the amplitude peaks.  The function found the largest value 

within a specified period over the whole data set.  Once this was data was recovered, it was fit 

using DataStudio's decaying exponential equation fit.  The parameters for all significant runs 

were averaged and described by 

𝑣𝑥(𝑡) = 𝐴𝑒−𝐶𝑡 + 𝐵  (5) 

𝑣𝑥 (𝑡) = −𝐴𝐶𝑒−𝐶𝑡   (6) 

 

Figure 2 - Velocity vs Time data 



 

Figure 3 - Close-up of Velocity vs Time data 

Analysis 

The experiment yielded 𝛾(90𝑠) = (0.212 ± 0.049)
𝑁𝑠2

𝑚4  at 20.5°𝐶 and 996 hPa (only one 

measurement for temperature and pressure over a matter of hours).  The standard value for 

𝛾𝑎𝑖𝑟 = 0.250
𝑁𝑠2

𝑚4 , at STP3.  This gives a relative percentage error of −(15 ± 11.1)% .  The 

author believes the large error on 𝛾 can be attributed to the algorithm used to obtain the 

amplitude peaks of the velocity.  The algorithm used was y=(10,10,1.52,x) where 1.52 is the 

period, T, found to exist in the system.  However, this peak to peak period T varies within a 

single data set of velocity by about ± 0.06.  Coupled with the noise found in the velocity data 

(see Figure 4), the peak detecting algorithm may have miscalculated some of the actual peak 

values, obtaining slightly larger or lower values based on where the period began and ended 

during the calculation.  This changing period most likely was attributed to small side-to-side 

swaying on the pendulums arc of motion.  Another large error was likely due to the lack of 

involvement of the friction of the pivot (string on metal), effectively making the damping 

coefficient greater.   
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Figure 4- Decaying Exponential of V vs T envelope 

Since the author chose to use the shown method using decaying exponentials to describe the 

velocity, 𝛾(𝑡) inherently varied with time.  Thus, 𝛾(𝑡) was graphed using discrete time intervals 

(see Figure 5).  An unexpected curve was shown to describe the time evolution of 𝛾(𝑡).  It 

appears to reach a maximum value near 90 seconds, which is why the author chose to use 

𝛾(90𝑠) for the experimental value.  𝛾(𝑡) displays a near constant value for approximate range 

of range 75𝑠𝑒𝑐 ≤  𝑡 ≤  100𝑠𝑒𝑐, only varying 0.001 
𝑁𝑠2

𝑚4  in this range.  

Figure 5 - Time evolution of the quadratic drag coefficient in air
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Conclusion 

The experimenter determined 𝛾𝑎𝑖𝑟 = (0.212 ± 0.049)
𝑁𝑠2

𝑚4
. The methods used were simple and 

effective, making a time efficient procedure for roughly determining the quadratic drag 

coefficient in a viscous medium.  However, a more precise methodology for measuring the 

coefficient is desired.  Specifically, if one can uncouple the motion, then one can solve for the 

coefficient directly as a function of horizontal velocity only through the equation 

𝑣(𝑡) =
𝑣0

1 + 𝑡𝛾𝐷2𝑣0/𝑚
 

which is a result of solving the first order differential found in equation 34. This method of 

solving of solving for 𝛾 directly was unattainable by the author do due lack of software 

capabilities for data analysis and time constraints.  

                                                           
4
 Taylor, John R.; pg. 46, Classical Mechanics, University Science Books, 2005 


