CERN Training
Radiation effects on electronic components and systems for LHC

Radiation effects on devices:
Total Ionizing Dose, displacement effect, single event effect

by
J. Gasiot
«Electronique et Rayonnement»
Université de Montpellier II, FRANCE

Acknowledgments: Laurent Dusseau, G. Hubert, E. Lorfèvre. Many of the view graphs come from original works developed in our team.
OUTLINE

• Introduction
• Radiation field & dosimetry
• Total ionizing dose
• Displacement
• Single event effect
• Conclusion
Introduction

Radiation effects on electronic devices are observed:

Nuclear applications
- **civil**
 - high Dose
 - gamma, electron, neutron

Military
- Dose and photocurrents in SC
- X-ray flash

Accelerators
- high dose, displacement and single event
- hadrons

Space
- dose, displacement (LEO) and single event
- heavy ions, electrons protons

Commercial LSI at ground level
- single event
- neutron and material contamination
Introduction

Radiation failure classification in devices:

Cumulative effects:
Long term cumulative effect
 Dose (TID, Total Ionizing Dose) and Dose rate
 Ionization and trapping in insulators, bulk and interface
 Displacement damage

Single Event Process (SEP)
Short time response resulting from the energy transfer of a particle
to the device.
Introduction

Space anomalies

- Unidentified Anomalies: 43%
- Other Anomalies: 24%
- Radiation Induced Anomalies: 33%
Comparison with space environment

Total Dose in Space and CMS

Total Dose (rad/10 years)
Comparison with space environment

Charged Hadron Flux in space and CMS

Charged Hadrons Flux (particles/cm²/10 years)
Comparison with space environment

Charged Hadron Diff. Energy Spectrum

Energy (MeV) vs. E.dφ/dE (1/cm²/10 years)

- Pions in CMS tracker
- Protons in CMS tracker
- Protons in space
OUTLINE

• Introduction

• Total ionizing dose

• Displacement

• Conclusion
Radiation field & dosimetry
Radiation source

Activity
- Unit: Ci, Bq (s\(^{-1}\))
- 1 Ci = 3.7 \(10^{10}\) Bq (disintegrations \(\cdot\) s\(^{-1}\))

Luminosity
- \(N_1, N_2\): number of particles
- \(S\): Interaction surface
- \(f\): Collision frequency
- \(R\): Activity
- \(\sigma_i\): cross section

\[
L = \frac{N_1 N_2}{S} \cdot fk
\]

\[
R = \sum_i \sigma_i \cdot L
\]

Typical activity:
- Co60 radiotherapy k Ci
- Geological sample 0.1 Bp/g
Radiation field

Typical values:
- neutron at ground level: $0.1 \text{ cm}^{-2} \text{ s}^{-1}$
- protons in space, belts ($E > 10 \text{ MeV}$): $10^5 \text{ cm}^{-2} \text{ s}^{-1}$
- Electrons in space belts ($E > 1 \text{ MeV}$): $10^6 \text{ cm}^{-2} \text{ s}^{-1}$
- heavy ions in space (Geo, 10 years): 10^6 cm^{-2}
Radiation field

Field : particle energy loss

For a charged particle beam, the average energy loss is characterized by (ICRU) :
- Stopping power, S (MeV/µm): average energy loss per unit path length of a charged particle traversing a material
 - resulting from coulomb interactions with
 - Electrons (Collision) S_{col}
 - Atomic nuclei (nuclear) S_{nuc}
- Mass stopping power $(1/\rho) S$

The energy may not be transferred in the surrounding path area. Nuclear reactions are not considered.
Dosimetry

- **Physical measurement**
 - Macroscopic: Dose, Gy (J.kg\(^{-1}\))
 - Microscopic: LET, NIEL

- **Effect**
 - Macroscopic:
 - Radiation protection Sv
 - in Si e-h production
 \[3.7 \times 10^{15} \text{ e-h/Gy}\]
 - Microscopic: MeV g\(^{-1}\)
 - LET: charge deposition around the track
 - NIEL: energy transferred to recoil atoms
Dosimetry

Material : energy deposition

Dosimetry is concerned by the determination of the energy deposited in the area of interest.
As direct a measurement is most of the time impossible, a dosimeter is used.
There are two levels
- The physical characterization
- The effect on a property of the considered device:
Measuring a dose at the first level on expect to obtain the second.

Macroscopic physical data:
The average energy deposited in a material per unit of mass at the point of interest is called Dose, Absorbed Dose, or Total Dose:
- Gy (J.kg\(^{-1}\)) \hspace{1cm} (1 \text{ Gy} = 100 \text{ rad})

Macroscopic effect:
In personal dosimetry the effect unit is the Sv (Sievert)
1 Gy gamma is 1 Sv
1 Gy neutron or proton correspond to several Sv
Dosimetry

Material: energy deposition

Typical doses:
- Ground level, population: 0.5 rad/year
- Lethal dose: 4 Sv (4 Gy gamma whole body)
- Space mission 10 y: GEO 10 krad
 - Constellation 100 krad
- Nuclear reactors: D >> 1 MGY
PARTICLE EFFICIENCY FOR TOTAL DOSE IN Si

Even if this kind of data must be used with care, its an interesting first response (order of magnitude).

- Fluences (cm$^{-2}$) that produces 1 Gy (TOTAL IONISATION DOSE) in Silicon (Particle energy: $E = 14$ MeV)

<table>
<thead>
<tr>
<th>Particle</th>
<th>Fluence (cm$^{-2}$)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>10^4</td>
<td>max TID is close</td>
</tr>
<tr>
<td>Proton</td>
<td>10^6</td>
<td></td>
</tr>
<tr>
<td>Electron</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>Photon</td>
<td>10^8</td>
<td></td>
</tr>
<tr>
<td>Neutron</td>
<td>10^9</td>
<td>long discussions</td>
</tr>
</tbody>
</table>

Radiation Effects

![Graph showing carrier density vs. oxide thickness]

- **Transient Phenomenon:**
 - Photo-currents

- **Permanent or semi-permanent Phenomenon:**
 - Displacements
 - Trapped charges + annealing

\[\Delta V = 3.6 \times d^2 D \]

for \(d = 100 \text{ nm} \) and \(D = 10 \text{ Krad} \)

\[\Delta V = 3.6 \text{ V} \]

\[C/\text{Gy} \sim 10^{15} \text{ cm}^{-3} \]

D, dose

d, oxide thickness
Dosimetry

Material

- Linear Energy transfer LET (MeV.cm\(^2\).g\(^{-1}\)):
 Energy deposition related to Ionization along the particle path

\[
\frac{1}{\rho} \left(\frac{d\Phi}{dx} \right) = LET
\]

Others convenient units are used:
- MeV.\(\mu\)m\(^{-1}\)
- C.\(\mu\)m\(^{-1}\)
Usual parameter for Single Events

- Non Ionizing Energy Loss NIEL (MeV.cm\(^2\).g\(^{-1}\)):
 Energy deposition related to recoil atoms along the particle path
Usual parameter for displacement damage
Linear Energy Transfer Units in Silicon

\[\text{MEV/}(mg/cm^2)\]
LET in Silicon

![Graph showing LET in Silicon for different energies.](image)
SEU Sensibility

0.25 and 0.35 µm Technology Sensibility
Range in Silicon
LET and Range in Silicon

![Graph showing LET and Range for various elements in silicon.](image_url)
Total dose Effects

Charge Trapping

- **Charge trapped at the interface**
- **Charge trapped in the oxide volume**

NMOS

Charge trapping after irradiation

Threshold voltage degradation as a function of the total Dose
Radiation Effects

Heavy Ions and Protons

• Single Event Effects (Semiconductor / Oxide)
 CMOS technologies
 Single Event Latch up
 Single Event Upset
 Power devices
 Single Event Burnout
 Single Event Gate Rupture
 Single Event Latchup

• Total dose effect (Oxide)

• Displacement damage (Semiconductor)
Radiation Effects

Heavy ion - Semiconductor interaction

Generation of electron-hole pair → Collection

1. Drift, Field funneling
2. Diffusion, radial and slow

Reverse biased junction
OUTLINE

• Introduction
• Radiation field & dosimetry
• Total ionizing dose
• Displacement
• Single event effect
• Conclusion
TOTAL IONISATION DOSE EFFECT (TID)

Total Ionizing Dose (TID) induces:
- charge trapping in the oxide
- new states at the Si-SiO$_2$ interface.

- TID may change the device electrical characteristics for a dose as low as 10 Gy

- Long term behavior, interface state density and bulk charge, depend on the device history.
 - Important parameters are:
 - Dose
 - Dose rate
 - Applied voltage
 - Temperature
 - Time.
- These parameters must be taken into account in the device selection.
TOTAL IONISATION DOSE IN : Si and SiO₂

- In Si (r = 2.3 g cm⁻³, pair creation energy = 3.8 eV)
 \[\text{In Si} \quad N = 3.7 \times 10^{15} \text{ (electron-hole pairs) cm}^{-3} \text{ Gy}^{-1} \]

- In SiO₂ (r = 2 g cm⁻³, pair creation energy = 17 eV)
 \[\text{In SiO}_2 \quad N = 7.6 \times 10^{14} \text{ (electron-hole pairs) cm}^{-3} \text{ Gy}^{-1} \]

- To obtain this result, it is supposed that the energy is mostly transferred to electrons.

- The density of electron-hole pairs for one Gy is very low, unless high dose and dose rate:
 - No effect on metal
 - No effect on Si or others SC (for low dose rate < 10⁵ Gy⁻¹ s⁻¹)
 - Possible effect on insulator - Trapping (starting at 10 Gy)

Very high dose rate may affect the semiconductor: starting with low carrier concentrations (military applications)
TOTAL IONISATION DOSE IN SiO₂ (BULK)

Typical Silicon oxide capacity behavior under irradiation:

- 1 - In SiO₂ during irradiation e-h pairs are created
- 2 - As electron and hole mobility are quite different ($\mu_e \gg \mu_h$)
 - Most electrons may get out
 - Most holes can be trapped
- 3 - The charge positive induced by D in the capacitor (S, a) is given by:
 $$\Delta Q = f \alpha S N e D$$
 f is a collection efficiency ($0 < f < 1$).
 - $f = 0$ hard oxide
 - $f = 1$ dosimeter
 ΔQ can be considered as the equivalent charge near the surface.
TOTAL IONISATION DOSE IN SiO$_2$ (BULK)

- With a proper electric field holes may be trapped near to the Si-SiO$_2$ interface, it’s the worst case:

\[\Delta Q = a S N e D \]

The capacity is \(C = \varepsilon S/a (\varepsilon_r = 3.9) \)

The voltage drop is:

\[\Delta V(\text{Volt}) = 3.5 \ a^2(\mu\text{m}) D(\text{Gy}) \]

High dose, bad quality \((f = 1)\) thick oxides \((a^2)\) develop important voltage.

- At the device level:

MOS Gates - not a problem for LSI

All devices - Thick Oxide next to the SC may induce, leakage,
Total ionizing dose at the Si-SiO$_2$ interface

Typical Silicon-silicon oxide interface behavior under irradiation:

In device fabrication, interface states density are kept as low as possible.

Electron injection occurs in the interface states, charges are exchanged with Si.

Interface state charge can be positive or negative depending on the fermi level position in regard to the state energy location.

- \textit{n channel} - acceptor - (negative)

- \textit{p channel} - donor - (positive)

Interface states charge changes with polarization (time constant).
Total ionizing dose at the Si-SiO$_2$ interface

- 1 - At Si-SiO$_2$ interface during irradiation chemical bonding are changed, hole trapping at interface, some hydrogen migration have been observed....

 - New interface states are formed.
 - Interface state density vs. energy is changed.
 - Interface charge is more important.

As a result: static and dynamic electrical response of the Si-SiO$_2$ is altered.

- 2 - Si-SiO$_2$ interface state density evolution with time after irradiation:

 - Interface state density changes with time.
 - Construction after irradiation.
 - Effect of annealing, hole trapping at interface.
Interface state charge and bulk trapped charge will play an important role:
changing the free carrier density \(n \) and \(p \) next to the interface
possible inversion layer
modifying the carrier mobility and life time
TOTAL IONIZATION DOSE EFFECTS IN DEVICES

MOS
Total ionization dose effects in MOS devices result from both, bulk charge and Silicon-silicon oxide interface charge:
- Induced mobility degradation
- Threshold voltage changes
- Induced leakage

Device characteristic changes:
- V_{th} (threshold voltage). Interface and bulk contribution.
- Q Trapped oxide charge (density)
- Q Interface trap charge (density and E distribution)
- μ Mobility in the channel.
- I_D Channel output drive (n or p)
TOTAL IONIZATION DOSE EFFECTS IN DEVICES

BIPOLAR

Total ionization dose effects in Bipolar devices result from silicon oxide (protection, isolation, non active) layers proximity with Si active device area:

- Induced mobility degradation
- Induced leakage

Device characteristic changes:
- Gain b.
- Leakage

IC - Integrated circuits

Frequency operation
Access and delay time
Power supply current
OUTLINE

• Introduction
• Radiation field & dosimetry
• Total ionizing dose
• Displacement
• Single event effect
• Conclusion
Displacement

- Displacement damage is related to lattice defect density induced by (secondary) particle collision with atoms, in the target, that are ejected from their initial position.

- Lattice defect density will increase with irradiation, inducing a degradation of the material characteristics.

- For the semiconductor, introducing new defects means:
 - diminution on the carrier life time (minority),
 - carrier charge density change,
 - reduced mobility

The electrical characteristics degradation of the semiconductor will affect the device performances.
The NIEL, S_d, is a target oriented parameter: average energy loss inducing displacement in the target.

NIEL simple expression for a mono atomic target:

$$S_d = \left(\frac{N}{A}\right) \sum \sigma_i(E) T_i(E) \text{ MeV g}^{-1} \text{ cm}^2$$

N is the Avogadro number, A is the atomic number of the target. $\sigma(E)$ is the interaction cross section. $T(E)$, the average part of the energy of the recoil atom that will induce displacement. The various possible interactions (i) are taken into account.

Particle interaction is a stochastic process, the NIEL is just an approximation that get sense when the number of events is quite large in the considered area.

High energy particles:

- 1 GeV muon will induce a shower that will affect billions of particles.
Displacement

Role of (relatively) low energy particles in displacement damage.
Collision with atoms:
 - Elastic
 - Inelastic
- Protons and heavy ions are important at low momentum.
- Electrons induce displacement at high energy.
- Photons do not have any effect if their energy is lower than 10 MeV - wavelength above 10^{-13} m.

- Neutron behave almost like protons at high energy (100 MeV and up).
Displacement damage is important at low energy. Inelastic collisions are of particular interest.
The energy threshold for atom displacement is in the range of 6 to 25 eV.
- One 100 MeV electron, Si recoil 0.77 MeV, 0.1 MeV in displacement
 2 500 Frenkel pairs (90 % recombine in a minute).
OUTLINE

• Introduction
• Radiation field & dosimetry
• Total ionizing dose
• Displacement
• Single event effect
• Conclusion
Effects in CMOS technologies

Single Event Upset

SRAM structure struck by an ion

Device level

Circuit level
(memory cell)
Effects in CMOS technologies

Single Event Upset

For impacts in or close to the drain

\[Q_{collected} \]

Drain current

Evolution of the node voltage

If \(Q_{collected} > Q_{critical} \) \(\rightarrow \) SEU
Effects in CMOS technologies

Single Event Upset

For impacts in or close to the drain

\[Q_{\text{collected}} > Q_{\text{critical}} \rightarrow \text{SEU} \]
Effects in CMOS technologies

Cross Section of a 0.6 µm CMOS technology

Threshold

Saturation
Effects in CMOS technologies

Single Event Latchup

Destructive Failure

Schematic representation of the parasitic NPNP structure

Example of latchup characteristic
Effects in CMOS technologies

SEL Hardening

- Geometric dimensions

- Adding contacts, body ties

- Guard rings
Effects in CMOS technologies

- Epitaxy
- Doping
- SOI
Effects in Power Devices: MOSFET, VIP

Single Event Burnout

Power MOSFET (VDMOS) = 15000 cells in parallel

Triggering of the parasitic bipolar transistor → Burnout
Effects in Power Devices:

Single Event Burnout

5 ns after the ion’s passage

Potential and current lines

Generation rate
MOSFET, VIP

Single Event Burnout

25 ns after the ion’s passage

Potential and current lines

Generation rate
Effects in Power Devices: MOSFET, VIP

SEB Hardening

Br 142 MeV

Sensitive at 310 V

Sensitive at 380 V

Sensitive at 460 V
Effects in Power Devices: M**OSFET**, **VIP**

SEB Hardening

LET Sensitivity
1. Standard 1
2. Stepped profile 1/6
3. Gradual profile 1/30

Doping Profile at the epi-substrate junction
Effects in Power Devices: MOSFET, VIP

Single Event Gate Rupture

- **ION** track
- **Gate electrode**
- **Holes to source contact**
- **Electrons to drain contact**

Diagram:
- **n+ substrate**
- **p+ plug**
- **gate**
- **source metallization**
- **epi n**
- **Drain contact**
- **V_{DS} > 0 V**
- **V_G < 0 V**
Effects in Power Devices: MOSFET, VIP

SEGR Hardening

1. Oxide thickness optimization
2. Reduced area of gate oxide
3. Extended plug

![Diagram showing SEGR Hardening](image-url)
Effects in Power Devices: IGBT

Single Event Latchup

Parasitic thyristor Example of Latched cell

Hardening solutions comparable to SEB
Conclusion

Development of an Electronic systems
Evaluation of the constraint
 Radiation field
 Working conditions (time, temperature, ..)
Testing conditions
System evaluation
Radiation hardening level :
Device
 technology
design
Circuit
 design
System
 redundancy
 Soft correction
 Shielding