Scintillation and Light Sensitive Detectors - I

Mark Chen Queen's University

How Particles Produce Light

- charged particles can produce light in materials
 - Čerenkov radiation
 - scintillation in some materials due to excitation and ionization
 - transition radiation
- neutral particles (e.g. γ and n) must interact first and the resulting electrons, protons, recoiling nuclei or other charged hadrons produce light

Electromagnetic Interaction Between a Charged Particle and an Atom

- charged particle
 - **α** mass m, energy γ m, momentum γ m**v**
 - moving along z-axis $\mathbf{v} = (0,0,v)$
- exchanges a real or virtual photon with atom
 - □ atom at (0,y,z)
 - **α** photon energy $\hbar \omega$, momentum $\hbar \mathbf{k}$
- four momentum is conserved in the interaction
 p = p' + p_γ
- easy to show that for photon energies ($\hbar\omega << \gamma m$)

 $\Box \quad \omega = \mathbf{v} \cdot \mathbf{k} = \mathbf{v} \, \mathbf{k}_z$

Electromagnetic Interaction Between a Charged Particle and an Atom cont'd

dispersion relation in material:

$$\omega^{2} = \frac{k^{2}c^{2}}{\varepsilon} \quad \varepsilon = \varepsilon_{1} + i\varepsilon_{2} \quad \varepsilon_{1} = n^{2}$$
$$k_{y}^{2} + k_{z}^{2} = \omega^{2}\varepsilon/c^{2}$$

• photon of the interaction has $k_y = \frac{\omega}{v} \sqrt{\frac{v}{c}}$

$$k_{y} = \frac{\omega}{v} \sqrt{\frac{v^{2} \varepsilon}{c^{2}}} - 1$$

- for photon energies that don't excite the material, the dielectric constant ε is real and ε = n²
- then, for v > c/n, k_y and k_z are real and a real photon can propagate due to the interaction

Čerenkov Light

- emitted by charged particles whose velocity exceeds c/n
- results in a coherent shock wavefront that's a cone of light
- half angle given by:
 - $\Box \cos \theta = 1 / [\beta n(\lambda)]$

- □ e.g. 41° in water for $\beta \approx 1$
- spectrum of photons emitted:

$$\frac{dN}{dx\,d\omega} = \frac{\alpha}{c} \left(1 - \frac{1}{n^2(\omega)\beta^2} \right)$$

from http://wwwmagic.mppmu.mpg.de/publications/theses/JLopez.pdf

Characteristics of Čerenkov Light

it's prompt

basically flat frequency spectrum of the emitted light

- that's what distinguished it from fluorescence which exhibits bands in the emitted spectrum
- which means it goes as $\frac{dN}{d\lambda} \propto \frac{1}{\lambda^2}$
- hence it's UV and blue light
 - cannot be harder UV because most materials start to absorb at shorter wavelengths and ε must be real

Transition Radiation

- produced at the boundary between materials that have different dielectric properties
- can be considered as the constructive interference of Čerenkov radiation from the two different materials across the discontinuity
 - works even below the Čerenkov threshold
 - works even for $\varepsilon_1 < 1$, especially for X-ray frequencies
 - in those cases which would otherwise have no real Čerenkov photon propagation in a uniform medium, the interference of the EM fields across the discontinuity, in the finite length radiator, produces real photons
 - from Wikipedia: the electric field of the particle is different in each medium, [and] the particle has to "shake off" the difference when it crosses the boundary
- I'll not discuss further...I've not worked with transition radiation detectors before

Scintillation

- the physics definition of scintillation:
 - the process by which ionization produced by charged particles excites a material and light is emitted by the de-excitation
- one of the most common detection techniques in nuclear and particle physics
- earliest use by Crookes in 1903
 - \square a ZnS-coated screen scintillates when struck by α particles
- then Curran and Baker in 1944
 - coated a photomultiplier tube with ZnS producing the first scintillation counter that didn't require the human eye
- since then many forms of scintillation detectors, large and small, have been developed
- the scintillation process differs in different materials (e.g. inorganic crystals, organic liquids, noble gases and liquids, plastic scintillators)
- we'll briefly examine each type...

Aside: Definitions

- when you excite a material (not thermally) and it subsequently gives off light, that is *luminescence*
- how it's excited determines the type of luminescence (e.g. photoluminescence, chemiluminescence, triboluminescence)
- *fluorescence* is photoluminescence or scintillation (i.e. excitation produced by ionizing radiation) that has a fast decay time (ns to μs)
- phosphorescence is the same, only with a much slower decay time (ms to seconds)

Stokes Shift

an important, general concept to keep in mind for all scintillators

- emitted photons are at longer wavelengths (smaller energies) than the energy gap of the excitation
- the processes that produce this "Stokes shift" are different in different scintillating materials
- this allows the scintillation light to propagate through the material
 - emitted photons can't be self-absorbed by exciting the material again

Scintillator Characteristics of Interest

- light yield: high efficiency for converting ionization energy to light output [photons/MeV]
- emission spectrum: overlaps with spectral response of light detector (e.g. PMT)
- decay time: can have several time constants
- density and Z: determine
 response to γ, e⁻ and other
 electromagnetic processes

Inorganic Crystals

- the scintillation mechanism requires the crystal band structure
 - you can't dissolve Nal in water or melt these crystals and get scintillation
- most are impurity activated
 - Iuminescence centres are associated with the activator sites in the lattice
 - interstitial, substitutional, excess atoms, defects

Inorganic Crystal Band Structure

Doped Inorganic Crystals

- decay time primarily depends on the lifetime of the activator excited state
- examples of doped crystals
 - Nal(TI)
 - Csl(Tl)
 - □ CaF₂(Eu)
 - □ LaBr₃(Ce)

typical NaI(TI) detector in Queen's undergraduate lab CsI(TI) from BaBar Roma group

Exciton Luminescence in Crystals

- ionization makes e-h pairs with electrons excited to the conduction band
- the e-h become loosely bound to each other forming an exciton
- the exciton moves together in the crystal; impurities or defects (w/o activator) provide a site for recombination
- example of exciton luminescence
 - □ BGO (bismuth germanate $Bi_4Ge_3O_{12}$)

BGO from Shanghai Institute of Ceramics

Self-Activated Crystals

- chemically pure crystal has luminscence centres (probably interstitial) due to stoichiometric excess of one of the constituents
- example: PbWO₄ and CdWO₄
 - extra tungstate ions are the activator centres

 PbWO_4 crystals for the CMS ECAL from Wikipedia

Core-Valence Luminescence

- in BaF₂, core electrons (mainly Ba²⁺) aren't that tightly bound and get excited to the conduction band
- a valence band electron (mainly F⁻) very quickly combines with the core hole _____
- need E_{VV} < E_G, else an Auger electron would be emitted instead of a photon
- slow decay from conduction to valence band

BaF₂ photo from Saint-Gobain

Crystals

Comparison of Inorganic Crystals

Paramet Units:	er: ρ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	λ_{\max} nm	n^{\natural}	Relative output [†]	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	ves	~ 0
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	9	no	-1.6
BaF_2	4.89	1280	2.03	3.10	6.6	30.7	630 ^s	300^{s}	1.50	21 ^s	no	-2^{s}
							0.9^{f}	220^{f}		2.7^{f}		$\sim 0^{f}$
$\operatorname{CsI}(\operatorname{Tl})$	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	45	$_{\rm slight}$	0.3
CsI(pure) 4.51	621	1.86	3.57	5.6	39.3	35 [°]	420^{s}	1.95	5.6^{s}	slight	-0.6
							6^{f}	310^{f}		2.3^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.2	20.7	50 [°]	560 ^s	2.20	0.1 ^s	no	-1.9
							10^{f}	420^{f}		0.6^{f}		
LSO(Ce)) 7.40	2070	1.14	2.07	9.6	20.9	40	420	1.82	75	no	~ 0
GSO(Ce) 6.71	1950	1.38	2.23	8.9	22.2	600 ^s	430	1.85	3 ^s	no	-0.1
							56^{f}			30^{f}		

from Particle Data Group, Review of Particle Detectors

* Numerical values calculated using formulae in this review.

 $\,^{\natural}$ Refractive index at the wavelength of the emission maximum.

[†] Relative light yield measured with a bi-alkali cathode PMT.

[‡] Variation of light yield with temperature evaluated at room temperature.

f =fast component, s =slow component

CaF ₂ (Eu) 3.18	940	435	1.47	50	no
CdWO ₄ 7.9	14000	475	2.3	40	no
LaBr ₃ (Ce) 5.08	16	380	1.9	165	yes

from Saint-Gobain Crystals

Comparison of Emission Spectra with PMT and Photodiode Spectral Response

Fig. 4.3 Quantum efficiency curve of a silicon photodiode together with the emission spectrum of CsI(TI), CdWO₄ and BGO.

from http://www.scionixusa.com/pages/navbar/read_out.html

Crystal Comparison Notes

- light yield compared to Nal(TI) is over the spectral response range of bi-alkali PMT
 - some crystals emit at longer wavelengths and are better matched to Si photodiode spectral response
 - e.g. CsI(TI) with a photodiode would be 145% of NaI(TI)
- CdWO₄ is very slow but has low Th and Ra contamination (usually) and is thus good in low-background counting applications
 - also has very small afterglow
- LaBr₃ is relatively new and looks appealing
 - high light output
 - fast decay time
 - □ however, has ¹³⁸La (0.09% naturally-occurring) β , γ background

Radiation Length Photo Comparison

from Imperial College CMS group web page...photo from Ren-Yuan Zhu (Caltech)

Afterglow

- scintillation light that is given off after several milliseconds (phosphorescence)
 - caused by impurities or defects that create traps or metastable states with long lifetimes
 - BGO, GSO(Ce), PbWO₄, CdWO₄ tend to have small afterglow ~0.005% after 3 ms
 - the doped alkali halides like Nal(TI) and Csl(TI) can be quite high, ~0.1-5% after 3 ms

Organic Scintillators

- the scintillation mechanism is determined by the chemistry and physics of the benzene ring
- an organic scintillator will thus scintillate whether it's in a crystal form, is a liquid, a gas, or imbedded in a polymer
- all organic scintillators in use employ aromatic molecules (i.e. have a benzene ring)
- we'll examine the photophysics of aromatic molecules in detail...

Carbon Bonds

- carbon: 1s² 2s² 2p² electronic ground state
- carbon bonds: 1s² 2s¹ 2p³ and the 2s and 2p orbitals are hybridized
 - sp³ hybridization is tetrahedral (e.g. diamond, methane, cyclohexane)
 - not luminescent
 - sp² hybridization is planar
 - p_z orbital is unchanged
 - double-bonded carbon (e.g. ethylene, benzene)
 - is luminescent and the basis of organic scintillators
 - sp hybridization is linear
 - triple-bonded carbon (e.g. acetylene)
 - also luminescent

from 3Dchem.com

σ -Bonds and π -Bonds

- σ-bonds are in the plane, bond angle 120°, from sp² hybridization
- π -orbitals are out of the plane
 - in the benzene ring (and other carbon double bonds) they overlap each other
 - result is the π-electrons are completely delocalized

from http://www.monos.leidenuniv.nl/smo/index.html?basics/photophysics.htm

from Encyclopedia Brittanica web

carbon p orbitals

π -Electronic States

- theory of π-electron excited states uses a "perimeter free-electron model", with electrons going around the ring in both directions, spin up and down
- absorption spectroscopy confirms the theory
- the π-electronic states diagram can be deduced from theory and spectroscopy
 - □ has vibrational sub-levels (e.g. S_{10} , S_{11}) with ~0.16 eV spacing
- after absorption of a photon or excitation by ionization, the molecule undergoes vibrational relaxation (or internal conversion or degradation) to S₁₀

from M. Kobayashi (KEK), adapted from J.B. Birks

Scintillation in Organic Molecules

- the excited S₁₀ state decays radiatively to vibrational sublevels of the ground state
- the S₁₀ lifetime is ~ns
- thus the fluorescence emission spectrum is roughly a "mirror image" of the absorption spectrum (same spacing)
- emitted photons have less energy than S₀₀-S₁₀ – that's the important Stokes shift
- there is no S₂-S₀ emission because internal conversion is efficient and fast ~ps
- there are σ-electronic excited states too; but they are at higher energies above S₃

from M. Kobayashi (KEK), adapted from J.B. Birks

Mirror Image: Absorption and Emission

- compare the absorption spectrum with the emission spectrum
- individual vibrational states are thermally broadened and smear together

Competing Processes

non-radiative decay

- due to overlap of an S₀
 vibrational state with S₁
- ratio of the radiative rate to the total decay rate (radiative plus nonradiative) is the *fluorescence quantum* yield
- quantum yields of 0.8 or greater are typical for "good" scintillators

from http://www.monos.leidenuniv.nl/smo/index.html?basics/photophysics.htm

Competing Processes cont'd

- an intersystem crossing can occur, populating the triplet state
 - S₀-T₁ and T₁-S₀ cannot occur directly due to angular momentum and parity selection rules
- T₁ has a long lifetime since decay to the S₀ is forbidden
 this is phosphorescence
- delayed fluorescence from the triplet can also occur
 - $\Box \quad T_1 + T_1 \rightarrow S_1 + S_0 + phonons$

□ ~µS

from http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html

Aside: Triplet Lower than Singlet?

- why is the triplet T₁ state lower in energy than the singlet S₁ state?
 - it's experimentally observed: phosphorescence is at longer wavelengths than fluorescence
- Hund's Multiplicity Rule: for the same configuration the lower energy state is the one which has the higher total spin
 - the common explanation for Hund's rule is that states with parallel spins are more spatially separated and thus the electron-electron repulsion is less, and the energy is thus lower
 - atomic quantum calculations show this is not true; the real reason is that the antisymmetric nature of the triplet state contracts the 2s orbital radius resulting in more tightlybound electrons to the nuclei and a lower energy

from http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html

Organic Liquids

any aromatic organic solvent is a scintillator

- e.g. benzene, xylene, pseudocumene (1,2,4-trimethylbenzene)
- to improve the performance, a scintillating solute is dissolved in the solvent – this is called the fluor
 - e.g. PPO (2,5-diphenyloxazole), p-terphenyl, butyl-PBD
 - typically g/L quantities

• this accomplishes the following:

- efficient non-radiative transfer of excitation energy from the solvent to the fluor
- high fluorescence quantum yield of the fluor
- emission of fluor at even longer wavelengths compared to the absorption of the solvent, further reducing self-absorption
- typically fast decay times

• if desired a secondary wavelength shifter (WLS) can be added

- e.g. bisMSB, POPOP
- absorbs the light from the fluor and re-emits it at longer wavelengths that match the spectral response of the light detector
- typically 10's mg/L quantities

• the whole cocktail can be diluted in an optically-inert liquid

- e.g. mineral oil, dodecane
- usually done for chemical reasons, though good for transparency too

Solvents

- pseudocumene is common
 - used in KamLAND, Borexino, Palo Verde, MACRO, many commercial liquid scintillator cocktails
- safer solvents are being used (especially in biology applications)
 - PXE has density 0.985
 - DIN is in many commercial cocktails, miscible with water
 - however absorption is higher so less suited for large detectors
 - LAB (linear alkylbenzene)
 - developed by SNO+ as a scintillator (solvent) for nuclear/particle physics experiments; we're the first experiment to propose using LAB
 - high flash point, low toxicity
 - high light yield (about high as pseudocumene-based liquids)
 - excellent transparency
 - compatible with plastics like acrylic
 - cheap

Binary Mixtures and the Fluor

PPO or 2,5-diphenyloxazole

- the solvent molecule x is excited, relaxes to S_{1x}
- either by radiative or non-radiative transfer, the S_{1y} in the fluor molecule y is excited
 - radiative transfer is absorption and re-emission by the fluor
 - the emission spectrum of the solvent chosen to overlap the absorption spectrum of the fluor
 - \Box S_{1y} is thus slightly lower in energy than S_{1x}
- this has to occur preferentially over non-radiative de-excitation of the solvent molecules S_{1x}
- efficient non-radiative transfer depends on the concentration of fluor in the binary mixture
 - occurs by solvent-solvent dipole resonance interaction (Förster energy transfer) or by thermal diffusion of excited solvent molecules in a liquid
 - occurs by Förster energy transfer between the same or adjacent polymer chains in the plastic

Energy Transfer: Solvent-Fluor

red: efficient non-radiative transfer is desired

aside: fluor-WLS energy transfer can be *radiative* because of the high quantum yield of the fluor and small WLS concentrations used to maximize transparency

blue: radiative transfer works; reduced by solvent fluorescent quantum yield

Determining the Efficiency of Energy Transfer

Method 1 (fluorescence emission method): measure the fluorescence excitation and emission of PPO-LAB solution; excitation at 318 nm (LAB excitation), integrate emission range from 340-550 nm (PPO emission)

Method 2 (decay time method): excitation at 250 nm, emission 360 nm, measure the decay times of PPO-LAB solution, compare to the decay time of pure PPO

LAB-PPO energy transfer efficiency

PPO	Method 1	Method 2
[g/L]		
32	n/a	90.7%
4	80%	80%
2	72%	73%
1	60%	61%
0.5	46%	55%
0.25	35%	47%
0.1	23%	n/a
0.02	5.6%	n/a

Emission: Fluor and Wavelength Shifter

Diluting Liquid Scintillator

- diluting the cocktail in mineral oil or dodecane reduces the light output
- but note that 20% solvent concentration still exhibits ~70% of the light output
- it's not just the fraction of the excitation that was imparted to the solvent
- strongly suggests nonradiative energy transfer takes place between the dodecane and the solvent and/or fluor

Comparing Liquid Scintillator to Inorganic Crystals

decay time:

PPO intrinsic 1.6 ns versus Nal(TI) 230 ns

- light yield:
 - PC-PPO 14,000 photons/MeV versus Nal(TI) 40,000 photons/MeV
- density:
 - organic liquids C,H with ρ < 1 g/cm³ versus many high-Z crystals with ρ >5 g/cm³

Plastic Scintillator

- very common in nuclear and particle physics
- polymer base is typically PVT (polyvinyltoluene) or polystyrene (PVT-based slightly higher light yield)
 - aliphatic plastics (e.g. acrylic) can be used also, but have half the light yield of aromatic plastics
- primary solute is dissolved in the plastic
 - e.g. PBD, p-terphenyl, PBO
- secondary wavelength shifter
 e.g. POPOP
 - e.g. BBQ
- same scintillation mechanism

extruded plastic scintillator for MINERvA from Wikipedia

Scintillation in a Plastic

Plastic Scintillator: Advantages and Disadvantages

- reliable, robust, cheap, easy to fabricate into desired shapes
- can be used to detect neutrons by detecting proton recoils (as for a liquid scintillator)

drawbacks:

- subject to aging
- degrades upon exposure to some chemicals (e.g. oils, solvents, fingerprints)
- suffers radiation damage
- not resistant to high temperatures
- surface crazing affects light propagation because a plastic scintillator usually relies on total internal reflection at the surface

Care of Plastic Scintillator

Jeff Wilkes (UW) cleaning up a plastic scintillator from NSF Public Affairs web page

Comparing Plastic to Liquid

scintillator	light output	peak λ	decay constant	attenuation length	index of refraction	density [g/cm ³]
BC-400	65%	423 nm	2.4 ns	250 cm	1.58	1.032
BC-404	68%	408 nm	1.8 ns	160 cm	1.58	1.032
BC-416	38%	434 nm	3.3 ns	400 cm	1.58	1.032
BC-428	36%	480 nm	12.5 ns	150 cm	1.58	1.032
PC-based liquid	80%	425 nm	2.5 ns		1.505	0.877
30% PC diluted in mineral oil	60%	425 nm	3 ns	>500 cm	1.48	0.86
LAB- based	75%	425 nm	3.5 ns		1.47	0.87

from Saint-Gobain Crystals

note: values for plastics are for commercial products while liquid scintillator cocktails are representative values that can be adjusted by selecting the fluor, the wavelength shifter and their concentrations

note: light yield is quoted as a fraction of anthracene, which is 17,400 photons/MeV

Scintillating Glass Blocks

- glass doped with an activator scintillates like an inorganic crystal
 - e.g. Ce-doped glass
- however, energy transfer to the activator centre is much less efficient without the crystal lattice
- light yield is much reduced compared with an inorganic crystal, less than few% of Nal(TI)
- decay time: ~tens ns
- short radiation length is possible by adding lead
- inexpensive, physically and chemically resistant

lead glass *Čerenkov* radiator from Fermilab Charmonium E835 in Museum of Modern Art in New York City

• ⁶Li glass used for slow neutron detector $n + {}^{6}Li \rightarrow \alpha + t$

Scintillating Fibres

- the fibre core is
 - glass with activator
 - polystyrene with fluor

A Typical Round Multi Clad Scintillating Fiber

glass fibers from Pacific Northwest National Lab

Typical SCIFI Performance

- isotropic light that is collected
 - □ single-clad: ~6%
 - double-clad: ~10%
- minimum ionizing particle passes through a 1 mm fibre
 - a 2 MeV/cm
 - 10,000 photons/MeV
 - □ thus ~2000 photons emitted
- only 200 are transported down the fibre
- 95% lost due to attenuation (depends on length)
- out the end, the DØ SCIFI Tracker (0.8 mm diameter fibre) gets about 9 photoelectrons (with an 85% quantum efficiency detector)

scintillating fibre bundle as a particle tracker

b) SCINTILLATING FIBRE BUNDLE (FIBRES PERPENDICULAR TO TRACK)

c) SCINTILLATING FIBRE BUNDLE (FIBRES PARALLEL TO TRACK)

from M. Atkinson et al.

Noble Gases and Liquids

- scintillation mechanism is again different
- noble gases/liquids are monatomic but excited atoms can form dimers (excited dimer or excimer)
 e.g. Ar^{*}₂
- the excited dimer is either in a singlet or triplet state
 - singlet state is fast (6 ns for argon)
 - triplet state is slow (1.6 μ s for argon)
- it decays by photon emission with photon energy less than what's needed to excite the monomer
 - hence, transparent to its own scintillation light
- high light yield: e.g. 40,000 photons/MeV for argon

Additional Considerations

- quenching, linearity and pulse-shape discrimination (PSD) are related properties
 - PSD is the ability to distinguish between different particles exciting the scintillation by the shape of the light pulse
- these properties can be considered, in general, for all types of scintillators
- most of this discussion is directed at organic scintillators

Quenching

- quenching is an external process that de-excites the scintillator without fluorescence
 - sometimes internal non-radiative relaxation is also called quenching
- impurity quenching
 - e.g. oxygen in an organic liquid
- ionization quenching
 - high ionization density quenches the excited π-electrons
 - saturation of available luminescent centres for inorganic crystals
 - collision of excimers for noble gases/liquids and de-excitation

from http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html

Impurity Quenching

- presence of oxygen in an organic liquid at ppm levels can strongly quench fluorescence, especially in unitary scintillators
 - greatly reduces light yield
 - shortens lifetimes
- oxygen and other impurities can compete with the fluor in energy transfer from the excited solvent
 - again reducing light yield
- to combat oxygen quenching
 - □ increase the fluor concentration
 - deoxygenate the scintillator by bubbling with nitrogen or vacuum degassing the liquid
- impurities in an inorganic crystal can quench the excitation, competing with activator centres
 - □ the obvious solution grow pure crystals

Ionization Quenching

- ionization excites singlet and triplet π -electronic states
 - leading to fast fluorescence and slow delayed fluorescence from the triplet
 - results in multi-component scintillation decay time profile whereas UV excitation produces mainly single time constant fluorescence
- high ionization density can quench the excited singlet π -electrons
 - the fast component is thus reduced for high dE/dx particles
 - picture it as overlapping excitations that interfere with each other
- three important consequences:
 - non-linearity in energy response
 - □ heavy particles with higher dE/dx (e.g. α) produce less light for the same energy deposit, (by a factor of >10 for α in liquids)
 - the scintillation pulse shape (fast/slow components) is different for heavy particles, enabling pulse-shape discrimination

Ionization Quenching – Birks' Rule

• for any given scintillator composition, must fit the quenching data to get kB

• A is the absolute scintillation efficiency

Light Yield for Different Particles

- a significant effect in liquid and plastic scintillators because ionization quenching reduces the (majority) fast component
- only minor difference in inorganic crystals
 - e.g. 70% light output for heavy particles in a crystal compared to electrons
- noble gas/liquid light yield from different particles
 - e.g. 20-30% light output for nuclear recoils in Ar, Xe compared to electrons

quenching factor: light output compared to that from an electron with the same energy

Pulse-Shape Discrimination

inorganic crystals:

- high ionization density favours exciton formation and efficient transfer to activators with fast fluorescence
- low dE/dx has a relatively greater fraction of slow metastable states
- noble gases/liquids:
 - ionization recombines forming excited singlet dimers and high ionization density facilitates recominbation
- organics:
 - high ionization density quenches fast singlet

heavy particle scintillations are faster in inorganics and noble gases/liquids while they are slower in organics!

PSD Scintillation Time Profiles

References

- K. Kleinknecht, "Detectors for Particle Radiation", Cambridge University Press, Cambridge (1987).
- W.R. Leo, "Techniques for Nuclear and Particle Physics Experiments", Springer-Verlag, Heidelberg (1987).
- J.B. Birks, "The Theory and Practice of Scintillation Counting", Pergamon Press, New York (1964).
- S.E. Derenzo, "Scintillation Counters, Photodetectors and Radiation Spectroscopy", IEEE Short Course "Radiation Detection and Measurement", 1997 Nuclear Science Symposium.
- Particle Data Group, "2006 Review of Particle Physics", W.-M. Yao et al., J. Phys. G 33, 1 (2006).