

reduct recommendation tool...

Tech Tip # 3: Viscosity and the Thixotropic Index

Can't find what you need? Call 1.978.667.3805 or 🗁

Viscosity and the Thixotropic Index (T.I.) are two common components in an epoxy that can have a great effect on how the product will work for a particular application.

Viscosity is a measurement of a fluid's resistance to flow. Viscosity is measured in Poise, and the centipoise (cP) is the common unit used. One cP is defined as the viscosity of water. From this base, all other viscosities are derived. A product like honey would have a much higher viscosity—around 10,000 cPs—compared to water. Honey would flow much slower out of a tipped glass than water would. Here is a list of common material's and their viscosities:

Approximate Viscosities of Common Materials (At Room Temperature-70°F)		
Material	Viscosity in Centipoise	
Water	1 cps	
Milk	3 cps	
SAE 10 Motor Oil	85-140 cps	
SAE 20 Motor Oil	140-420 cps	
SAE 30 Motor Oil	420-650 cps	
SAE 40 Motor Oil	650-900 cps	
Castrol Oil	1,000 cps	
Karo Syrup	5,000 cps	
Honey	10,000 cps	
Chocolate	25,000 cps	
Ketchup	50,000 cps	
Mustard	70,000 cps	
Sour Cream	100,000 cps	
Peanut Butter	250,000 cps	

Thixotropic Index is a ratio of a material's viscosity at two different speeds, generally different by a factor of ten. A thixotropic material's viscosity will reduce as agitation or pressure is increased. This index indicates the material's ability to hold its shape. Mayonnaise is a great example of this. It holds its shape very well, but when a shear stress is applied, the material easily spreads.

The viscosity of a material can be decreased with an increase in temperature in order to better suit an application. The viscosity of most materials will drop in a common fashion, exponential fashion. Below, the graph of 353ND shows how a material will react to heat.

* TECHNOLOGY			
Temp (°C) 23 25 27 29 31 33 35 45 55 65	Viscosity (cPs) 3153 2252 2147 1728 785 737 737 409 163 143	353ND Mixed Viscosity versus Temp 4000 3000 2000 1000 23 25 27 29 31 33 35 45 55 65 70 Temp (C)	
70	102		

The viscosity of the 353ND drops very quickly, and then levels out at increased temperature. This is a good method to use if an epoxy is very good for a certain application, but the viscosity is slightly high. It must be noted that by heating up the mixture, some of the pot life is used up during the heating, so it will gel faster than if left at room temperature.

Still have questions?

Call Technical Services at 1-978-667-3805

Or

E-mail: techserv@epotek.com