4

Hyperbolic mirror

In this chapter, some important properties of the hyperbolic mirror will be mathematically described. This offers results that can be used for further applications like hyperbolic mirror computation and simulation and bird's eye view.

4.1 Hyperbolic Formula

The general hyperbola can be expressed by the formula

$$
\begin{equation*}
\frac{x_{p}^{2}}{a^{2}}-\frac{y_{p}^{2}}{b^{2}}=1 \tag{4.1}
\end{equation*}
$$

where a is the distance from the coordinate system's origin to the intersection points of the hyperbola with the x-axis. The terms $\frac{b}{a}$, resp. $-\frac{b}{a}$ describe the gradients of the two asymptotes, to which the hyperbola converges for $x \rightarrow \infty$ and $x \rightarrow-\infty$. Additionally, $\varepsilon=\sqrt{a^{2}+b^{2}}$ is the distance f (focal distance) from the origin to the hyperbola's two focal points F and F^{\prime} (see Fig. 4.1).

Figure 4.1: General hyperbola with $a=1, b=0.5$

4.2 Optical Properties of the Hyperbolic Mirror

The properties of a hyperbolic mirror can be derived from the rule $\alpha_{p t}=\alpha_{t r}$, that the angle of incidence is equal to the angle of reflection (Fig. 4.2).

Figure 4.2: Reflection of a light ray on a planar mirror surface

4.2.1 Analysation of the Hyperbolic Formula

For this reason, on the one hand the regular formula of the hyperbola from equation 4.1 has to be analysed

$$
\begin{align*}
\frac{x_{p}^{2}}{a^{2}}-\frac{y_{p}^{2}}{b^{2}}=1 & \Leftrightarrow y_{p}^{2}
\end{align*}=\frac{b^{2} \cdot\left(x_{p}^{2}-a^{2}\right)}{a^{2}}, ~\left(\frac{b}{a} \cdot \sqrt{x_{p}^{2}-a^{2}}\right.
$$

The hyperbola's clipping of the first quadrant ($x_{p} \geq 0 \wedge y_{p} \geq 0$) already describes the mirror's shape as a rotational entity, therefore equation 4.2 can be simplified

$$
\begin{equation*}
y_{p}=\frac{b}{a} \cdot \sqrt{x_{p}^{2}-a^{2}} \quad ; \text { with } \quad x_{p} \geq 0 \tag{4.3}
\end{equation*}
$$

Accordingly, the incoming ray's gradient s_{p} can be determined by

$$
\begin{equation*}
s_{p}=\frac{y_{p}}{x_{p}}=\frac{b}{a \cdot x_{p}} \cdot \sqrt{x_{p}^{2}-a^{2}} \tag{4.4}
\end{equation*}
$$

On the other hand, using this restriction yields the hyperbola's tangent

$$
\begin{align*}
\frac{x_{t} \cdot x_{p}}{a^{2}}-\frac{y_{t} \cdot y_{p}}{b^{2}}=1 & \Leftrightarrow y_{t}=\frac{b^{2} \cdot x_{t} \cdot x_{p}}{a^{2} \cdot y_{p}}-\frac{b^{2}}{y_{p}} \\
& \Leftrightarrow y_{t} \stackrel{(4.3)}{=} \frac{b \cdot\left(x_{t} \cdot x_{p}-a^{2}\right)}{a \cdot \sqrt{x_{p}^{2}-a^{2}}} \\
& \Leftrightarrow y_{t}=\frac{b \cdot x_{p}}{a \cdot \sqrt{x_{p}^{2}-a^{2}}} \cdot x_{t}-\frac{a}{\sqrt{x_{p}^{2}-a^{2}}} \tag{4.5}
\end{align*}
$$

Figure 4.3: Reflection of a light ray on a hyperbolic surface (first quadrant)

Thus, the tangent's gradient s_{t} can be expressed subject to x_{p} as

$$
\begin{equation*}
s_{t}=\frac{b \cdot x_{p}}{a \cdot \sqrt{x_{p}^{2}-a^{2}}} \tag{4.6}
\end{equation*}
$$

4.2.2 Computation of the Reflection's Angle by using the atan2

One way to calculate the angle of reflection α_{r} is to determine the solution by using the angle of incidence α_{p}, the tangent's angle α_{t} and the arcus-tangens-2 function

$$
\begin{align*}
\alpha_{r} & =2 \cdot \alpha_{t}-\alpha_{e} \\
& =2 \cdot \operatorname{atan} 2\left(s_{t}\right)-\operatorname{atan} 2\left(s_{p}\right) \tag{4.7}
\end{align*}
$$

Because of the use of the arcus-tangens function this solution has multiple disadvantages:

- The gradient s_{r} of the reflected ray

$$
s_{r}=\tan \left(\alpha_{r}\right)=\tan \left(2 \cdot \operatorname{atan} 2\left(s_{t}\right)-\operatorname{atan} 2\left(s_{p}\right)\right)
$$

which is necessary for further analysis, can hardly be simplified and solved in order to get x_{p}.

- In the case that the reflection angle is exactly upright, which is equal to $\alpha_{r}=\frac{\pi}{2}$, the tangens and the gradient to calculate $\left(s_{r}\right)$ are not defined:

$$
\lim _{\alpha_{r} \rightarrow \frac{\pi}{2}-0}\left[\tan \left(\alpha_{r}\right)\right]=\infty \quad \lim _{\alpha_{r} \rightarrow \frac{\pi}{2}+0}\left[\tan \left(\alpha_{r}\right)\right]=-\infty
$$

- The multiple application of trigonometric functions is more expensive in calculation time than the following approach.

4.2.3 Computation of the Reflection's Angle by using Vector Calculation

The second approach to determine the ray of reflection directly follows from the simple reflection rule that the angle of incidence is equal to the angle of reflection:

$$
\begin{align*}
& \alpha_{p t}=\alpha_{t r} \tag{4.8}\\
& \Leftrightarrow \cos \left(\alpha_{p t}\right)=\cos \left(\alpha_{t r}\right) \\
& \Leftrightarrow \frac{\vec{p} \cdot \vec{t}}{\|\vec{p}\| \cdot\|\vec{t}\|}=\frac{\vec{r} \cdot \vec{t}}{\|\vec{r}\| \cdot\|\vec{t}\|} \\
& \Leftrightarrow\left|\begin{array}{rll}
x_{p} \cdot x_{t}+y_{p} \cdot y_{t} & =x_{r} \cdot x_{t}+y_{r} \cdot y_{t} \\
x_{p}^{2}+y_{p}^{2} & =x_{r}^{2}+y_{r}^{2}
\end{array}\right| \\
& \Leftrightarrow \quad x_{r}=\left\{x_{p}, \quad \frac{2 \cdot x_{t} \cdot y_{t} \cdot y_{p}+\left(x_{t}^{2}-y_{t}^{2}\right) \cdot x_{p}}{x_{t}^{2}+y_{t}^{2}}\right\}, \tag{4.9}\\
& y_{r}=\left\{y_{p}, \quad \frac{2 \cdot x_{t} \cdot y_{t} \cdot x_{p}+\left(y_{t}^{2}-x_{t}^{2}\right) \cdot y_{p}}{x_{t}^{2}+y_{t}^{2}}\right\} \tag{4.10}
\end{align*}
$$

The first solution corresponds to the incoming ray \vec{p}. Thus, there exists a unique solution for the reflected vector,

$$
\begin{align*}
x_{r} & =\frac{2 \cdot x_{t} \cdot y_{t} \cdot y_{p}+\left(x_{t}^{2}-y_{t}^{2}\right) \cdot x_{p}}{x_{t}^{2}+y_{t}^{2}} \tag{4.11}\\
y_{r} & =\frac{2 \cdot x_{t} \cdot y_{t} \cdot x_{p}+\left(y_{t}^{2}-x_{t}^{2}\right) \cdot y_{p}}{x_{t}^{2}+y_{t}^{2}} \tag{4.12}
\end{align*}
$$

having none of the disadvantages of the first approach.

4.2.4 Calculation Results

By using the formulas from sections 4.2.1 and 4.2.3 the following inputs allow to determine the following output values (see Fig. 4.3):

Input	Output
- Hyperbola parameters a, b	- Vector of incoming ray $\vec{p}=\left(x_{p} \mid y_{p}\right)$
- The point of reflection x_{p}	- Vector of tangent ray $\vec{t}=\left(x_{t} \mid y_{t}\right)$
	- Vector of reflection ray $\vec{r}=\left(x_{r} \mid y_{r}\right)$
	- Angle of each ray $\alpha=\operatorname{atan2} 2(y, x)$

4.3 Further Applications

4.3.1 Hyperbolic Focal Point

This offers the possibility to get the virtual focal point of the hyperbolic mirror, where all reflections of incoming rays intersect. Thus, if all reflections intersect in only one point, the picture taken by the camera will be sharp in all regions.
By defining a shift Δx_{p} along the x-axis

$$
\begin{equation*}
x_{g}\left(x_{p}\right)=x_{p}+\Delta x_{p} \tag{4.13}
\end{equation*}
$$

and determining the x-intersection $x_{r 0}$ of a reflected ray x_{r} (see Fig. 4.4)

$$
\begin{equation*}
x_{r 0}\left(x_{p}\right)=x_{g}\left(x_{p}\right)-\frac{x_{r}\left(x_{p}\right)}{y_{r}\left(x_{p}\right)} \cdot y_{p} \tag{4.14}
\end{equation*}
$$

this problem can be solved by variation calculation, which means to find a solution for

$$
\begin{equation*}
x_{r 0}\left(x_{p}\right)=x_{r 0}\left(x_{g}\left(x_{p}\right)\right) \quad \forall x_{p} \tag{4.15}
\end{equation*}
$$

Figure 4.4: Extensions for determining unique focal point

There can be found two solution for this equation subject to Δx_{p} :

$$
\begin{equation*}
\Delta x_{p}=\left\{\sqrt{a^{2}+b^{2}}, \quad-\sqrt{a^{2}+b^{2}}\right\} \tag{4.16}
\end{equation*}
$$

For the cause that the first one is equal to the hyperbola's focal point (see section 4.1), the second one is the unique solution.

Thus, A sharp picture can only be taken, if the focal point of the camera exactly lies in $F^{\prime \prime}$ (see section 4.1), opposed to the hyperbola's focal point.

This is the main advantage of hyperbolic mirror shape, which is not supported by spherical mirrors, for example.

4.3.2 Hyperbolic Mirror Simulator

Using the formulas derived in the last sections, a program was developed to simulate reflections on several hyperbolic mirror shapes.

Figure 4.5: Two screenshots of the MirrorDialog to simulate a hyperbolic mirror.
Like it can be seen in Fig. 4.5, there is a graphical visualisation of the system, which is changing dynamically when changing any of the parameters besides. These are:

a, b	hyperbolic parameters
r	real upper radius of the hyperbolic mirror
$r p$	upper radius of the hyperbolic mirror in the round image
$s c$	scaling factor to zoom in / out
c	distance from camera focal point to the bottom of the mirror
p	regarded point in round image (distance to round image center)
$x a$	distance from floor to top of the mirror

Table 4.1: Parameters for MirrorDialog.
Additionally, a virtual light ray can be send out from the camera focal point towards the mirror by setting p. An output of several informations can be reached by clicking the button „Parameters". These are the internal parameters, further computed
distances and determined values for the incoming, the tangent and the reflected ray (depending on p). The following is an example printout for the left mirror from Fig. 4.5.

```
********** Internal Parameters *****************
A : 10.00000 (first parameter of hyperbolic)
B : 20.00000 (second parameter of hyperbolic)
R : 50.00000 (upper radius of hyperbolic)
RP : 400.00000 (upper radius of hyperbolic [Pixel])
Sc : 1.00000 (scaling factor)
C : 45.00000 (distance from camera F to bottom of hyperbolic)
C1 : -35.00000 (distance from camera F to hyperbolic 0|0)
F : 22.36068 (distance from hyperbolic F to hyperbolic 0|0)
H : 26.92582 (height of mirror (from hyperbolic 0|0))
H2 : 16.92582 (height of mirror)
XAV: -100.00000 (floor distance to upper hyperbolic)
Px : 12.50000 (x-coordinate of point P (image))
Py : 61.92582 (y-coordinate of point P (image))
Px2: 9.29061 (x-coordinate of point P (mirror))
Py2: 11.02628 (y-coordinate of point P (mirror))
Pa : 78.58801 (angle of vector of point P (mirror))
Tx : 4.74728 (x-coordinate of tangent (mirror))
Ty : 1.00000 (y-coordinate of tangent (mirror))
Ta : 11.89528 (angle of vector of tangent (mirror))
Rx : 36.41836 (x-coordinate of reflection (mirror))
Ry : -51.62132 (y-coordinate of reflection (mirror))
Ra : -54.79744 (angle of vector of reflection (mirror))
YA : 24.19528 (y-axis intercept of reflection)
XA : 68.62268 (floor axis intersect of reflection)
```

Each configuration can be saved and reloaded in the "Configuration" menu.

4.3.3 Bird's Eye View

Having correctly put in the system parameters for a real system, a bird's eye view can be calculated from the round image. Like the panoramic image is the projection of the round image onto a cylindrical shape, the bird's eye picture is the projection onto a plane, usually the ground plane.
By using configuration information from the MirrorDialog (see section 4.3.2), it is possible to assign each image pixel to a point on the floor.

In the test environment (see Fig. 3.4), it is possible to extract the floor-wall edges by edge detection. By projecting each edge point to the floor by bird's eye view, the real distances to the walls can be estimated.

The following experiment was made with the mirror shape described in section 3.2 and a self-made calibration board, results can be seen in Fig. 4.6.

Figure 4.6: Left: Original round image (1600x1200). Center: Bird's eye view (201x201). Right: Bird's eye view of thresholded edge image (201×201).

A Line-Hough-Transformation method adapted on the bird's eye image has been implemented to get information about lines in the image. Each line can be described by only two parameters l and a, equal to length and angle of the line's normal from the respective line to image center. These information are accumulated in a partitioned 2-dimensional space. Accumulator cells that have collected most points after having processed the image are supposed to be the image's most important lines.

Using the binary bird's eye view image, the transformation offers the two main lines shown in Tab. 4.2, where c is the pixel count of the accumulator cell.

	\mathbf{c}	\mathbf{a}	$\mathbf{1}$
Line 1	133	357	88
Line 2	134	180	88

Table 4.2: Hough-Transformation results for the binary bird's eye view from Fig. 4.6.
Note that the pixel distances l are equal to real distance estimates (here in cm) that can be determined by this method. Regarding that the image has been taken at the middle of the floor, which corresponds to a distance of 82 cm to each wall, the resulting values of 88 cm are very good.

