
4
Hyperbolic mirror

In this chapter, some important properties of the hyperbolic mirror will be mathe-
matically described. This offers results that can be used for further applications like
hyperbolic mirror computation and simulation and bird’s eye view.

4.1 Hyperbolic Formula

The general hyperbola can be expressed by the formula
����
� ���

����	 � 

�
, (4.1)

where � is the distance from the coordinate system’s origin to the intersection points
of the hyperbola with the � -axis. The terms

�
 , resp. �
�
 describe the gradients of

the two asymptotes, to which the hyperbola converges for ��� � and ��� � � .
Additionally, � 


� � ��� 	 � is the distance � (focal distance) from the origin to the
hyperbola’s two focal points � and ��� (see Fig. 4.1).
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Figure 4.1: General hyperbola with 
���� , � ��� � !
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4 Hyperbolic mirror

4.2 Optical Properties of the Hyperbolic Mirror

The properties of a hyperbolic mirror can be derived from the rule � ��� 
 � ��� , that the
angle of incidence is equal to the angle of reflection (Fig. 4.2).

� ��� � �����
�� ��

Figure 4.2: Reflection of a light ray on a planar mirror surface

4.2.1 Analysation of the Hyperbolic Formula

For this reason, on the one hand the regular formula of the hyperbola from equa-
tion 4.1 has to be analysed
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The hyperbola’s clipping of the first quadrant ( � ������� � ����� ) already describes the
mirror’s shape as a rotational entity, therefore equation 4.2 can be simplified

� � 

	
� 
�� � �� � � � � with � � ��� (4.3)

Accordingly, the incoming ray’s gradient � � can be determined by
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On the other hand, using this restriction yields the hyperbola’s tangent
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4 Hyperbolic mirror

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

�����

� ���

��

��

��

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

� �
� �

� �

Figure 4.3: Reflection of a light ray on a hyperbolic surface (first quadrant)

Thus, the tangent’s gradient � � can be expressed subject to � � as

� � 

	 
 � �

��
 � � �� � � � (4.6)

4.2.2 Computation of the Reflection’s Angle by using the atan2

One way to calculate the angle of reflection � � is to determine the solution by using
the angle of incidence � � , the tangent’s angle � � and the arcus-tangens-2 function
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 ��� � � � � � (4.7)

Because of the use of the arcus-tangens function this solution has multiple disad-
vantages:

� The gradient � � of the reflected ray

� � 
 
 ��� � � � � 
 
 �
� � � 
 ��
 �
� � � � � � � ��
 ��� � � � � � �
which is necessary for further analysis, can hardly be simplified and solved in
order to get � � .

� In the case that the reflection angle is exactly upright, which is equal to � � 

�
� ,

the tangens and the gradient to calculate ( � � ) are not defined:
�����

������� �
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� The multiple application of trigonometric functions is more expensive in calcu-
lation time than the following approach.
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4 Hyperbolic mirror

4.2.3 Computation of the Reflection’s Angle by using Vector Calcula-
tion

The second approach to determine the ray of reflection directly follows from the
simple reflection rule that the angle of incidence is equal to the angle of reflection:

� ��� 
 � ��� (4.8)
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The first solution corresponds to the incoming ray
�� . Thus, there exists a unique

solution for the reflected vector,
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having none of the disadvantages of the first approach.

4.2.4 Calculation Results

By using the formulas from sections 4.2.1 and 4.2.3 the following inputs allow to
determine the following output values (see Fig. 4.3):

Input Output
� Hyperbola parameters � � 	 � Vector of incoming ray

�� 
 � � ��� � � �
� The point of reflection � � � Vector of tangent ray

�
 
 � � ��� � � �
� Vector of reflection ray

�	 
 � � � � � � �
� Angle of each ray � 
 ��
 ��� � � � � � �
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4 Hyperbolic mirror

4.3 Further Applications

4.3.1 Hyperbolic Focal Point

This offers the possibility to get the virtual focal point of the hyperbolic mirror, where
all reflections of incoming rays intersect. Thus, if all reflections intersect in only one
point, the picture taken by the camera will be sharp in all regions.
By defining a shift � � � along the � -axis

����� � � � 
 � � � � � � (4.13)

and determining the � -intersection � � � of a reflected ray � � (see Fig. 4.4)
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 � � (4.14)

this problem can be solved by variation calculation, which means to find a solution
for � � � � � � � 
 � � � � ����� � � � � ��� � (4.15)
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Figure 4.4: Extensions for determining unique focal point

There can be found two solution for this equation subject to � � � :

� � � 


�� � ��� 	 � � �

� � ��� 	 ��� (4.16)

For the cause that the first one is equal to the hyperbola’s focal point (see section
4.1), the second one is the unique solution.
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4 Hyperbolic mirror

Thus, A sharp picture can only be taken, if the focal point of the camera
exactly lies in � � (see section 4.1), opposed to the hyperbola’s focal point.

This is the main advantage of hyperbolic mirror shape, which is not supported by
spherical mirrors, for example.

4.3.2 Hyperbolic Mirror Simulator

Using the formulas derived in the last sections, a program was developed to simulate
reflections on several hyperbolic mirror shapes.

Figure 4.5: Two screenshots of the MirrorDialog to simulate a hyperbolic mirror.

Like it can be seen in Fig. 4.5, there is a graphical visualisation of the system, which
is changing dynamically when changing any of the parameters besides. These are:

� � 	 hyperbolic parameters	 real upper radius of the hyperbolic mirror	�� upper radius of the hyperbolic mirror in
the round image� � scaling factor to zoom in / out�
distance from camera focal point to the
bottom of the mirror� regarded point in round image (distance
to round image center)��� distance from floor to top of the mirror

Table 4.1: Parameters for MirrorDialog.

Additionally, a virtual light ray can be send out from the camera focal point towards
the mirror by setting � . An output of several informations can be reached by clicking
the button

”
Parameters“. These are the internal parameters, further computed
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4 Hyperbolic mirror

distances and determined values for the incoming, the tangent and the reflected ray
(depending on � ). The following is an example printout for the left mirror from Fig. 4.5.

********** Internal Parameters ***************
A : 10.00000 (first parameter of hyperbolic)
B : 20.00000 (second parameter of hyperbolic)
R : 50.00000 (upper radius of hyperbolic)
RP : 400.00000 (upper radius of hyperbolic [Pixel])
Sc : 1.00000 (scaling factor)
C : 45.00000 (distance from camera F to bottom of hyperbolic)
C1 : -35.00000 (distance from camera F to hyperbolic 0|0)
F : 22.36068 (distance from hyperbolic F to hyperbolic 0|0)
H : 26.92582 (height of mirror (from hyperbolic 0|0))
H2 : 16.92582 (height of mirror)
XAV: -100.00000 (floor distance to upper hyperbolic)
----------------------------------------------
Px : 12.50000 (x-coordinate of point P (image))
Py : 61.92582 (y-coordinate of point P (image))
Px2: 9.29061 (x-coordinate of point P (mirror))
Py2: 11.02628 (y-coordinate of point P (mirror))
Pa : 78.58801 (angle of vector of point P (mirror))
----------------------------------------------
Tx : 4.74728 (x-coordinate of tangent (mirror))
Ty : 1.00000 (y-coordinate of tangent (mirror))
Ta : 11.89528 (angle of vector of tangent (mirror))
----------------------------------------------
Rx : 36.41836 (x-coordinate of reflection (mirror))
Ry : -51.62132 (y-coordinate of reflection (mirror))
Ra : -54.79744 (angle of vector of reflection (mirror))
YA : 24.19528 (y-axis intercept of reflection)
XA : 68.62268 (floor axis intersect of reflection)
**********************************************

Each configuration can be saved and reloaded in the
”
Configuration“ menu.

4.3.3 Bird’s Eye View

Having correctly put in the system parameters for a real system, a bird’s eye view
can be calculated from the round image. Like the panoramic image is the projection
of the round image onto a cylindrical shape, the bird’s eye picture is the projection
onto a plane, usually the ground plane.
By using configuration information from the MirrorDialog (see section 4.3.2), it is
possible to assign each image pixel to a point on the floor.

In the test environment (see Fig. 3.4), it is possible to extract the floor-wall edges by
edge detection. By projecting each edge point to the floor by bird’s eye view, the real
distances to the walls can be estimated.
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4 Hyperbolic mirror

The following experiment was made with the mirror shape described in section 3.2
and a self-made calibration board, results can be seen in Fig. 4.6.

Figure 4.6: Left: Original round image (1600x1200). Center: Bird’s eye view (201x201). Right: Bird’s eye view of
thresholded edge image (201x201).

A Line-Hough-Transformation method adapted on the bird’s eye image has been
implemented to get information about lines in the image. Each line can be described
by only two parameters

�
and � , equal to length and angle of the line’s normal

from the respective line to image center. These information are accumulated in a
partitioned 2-dimensional space. Accumulator cells that have collected most points
after having processed the image are supposed to be the image’s most important
lines.

Using the binary bird’s eye view image, the transformation offers the two main lines
shown in Tab. 4.2, where

�
is the pixel count of the accumulator cell.

c a l
Line 1 133 357 88
Line 2 134 180 88

Table 4.2: Hough-Transformation results for the binary bird’s eye view from Fig. 4.6.

Note that the pixel distances
�

are equal to real distance estimates (here in cm) that
can be determined by this method. Regarding that the image has been taken at
the middle of the floor, which corresponds to a distance of 82 cm to each wall, the
resulting values of 88 cm are very good.
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