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Like a lot of other researchers in the field of mobile robotics we decided to build an
omnidirectional vision system by placing a hyperbolic mirror in front of a regular
perspective camera. In this paper we give an account of the practical issues we
encountered when assembling and calibrating our omnidirectional camera system.
Hopefully our experiences can help others that want to build their own system.
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Section 1 Introduction 1

1 Introduction

For a lot of applications it is beneficial to have a vision system that can observe a large part
of the scenery. An inexpensive way to build a camera with a wide field of view is by using a
standard camera with a standard lens having a rather narrow field of view and combining it
with a mirror designed and placed in front of the camera in such a way to increase the field
of view. Various convex mirror shapes can be chosen, but only a few will result in a camera
system that has a so called single viewpoint (central camera), which entails that points in the
image resulted from light rays intersecting in a unique world point [3, 6]. A common choice is
the hyperbolic mirror combined with a standard camera with a standard lens, which we have
used in our setup.

In this paper we will address some practical issues with assembling such a camera-lens-mirror
system. First, in Section 2, a formal description is given of a general hyperbolic mirror, which
is needed for calibrating the system and projecting image points to points in world coordinates.
Section 3 covers the design choices we made when acquiring the mirror, the camera and the
lens, and describes the basic camera calibration we performed. In Section 4 we discuss the
problems and our experience with properly placing the mirror with respect to the camera in
order to construct a system that behaves as a central camera. Finally, in Section 5 we give a
short overview of the basic geometry of the camera-lens-mirror system.

2 Model of the mirror

The hyperbolic mirror has the form of a hyperboloid:

(z + e)2

a2
− x2 + y2

b2
= 1, (1)

where a and b are mirror parameters denoting the semimajor and semiminor axis respectively
[11] and e =

√
a2 + b2 stands for mirror eccentricity. The coordinates of the 3D points are given

by X =
(

x y z
)T

. The hyperboloid described by (1) has two surfaces and two corresponding
”focal points” F1 and F2. The first focal point , F1, is located at the origin and second one, F2,

at
(

0 0 −2e
)T

. In Figure 1 we present a side view of the hyperboloid function. The shape
of the mirror is the shape of one side of the function while the other side is plotted using a
dashed line. A hyperbolic mirror is typically placed in such a way that the optical center of
the camera, known as the camera center, coincides with the second focal point F2 as shown in
Figure 1. Such placement is important since the whole camera-lens-mirror system becomes a
wide central camera with its camera center located at the first mirror focal point F1. The term
”central camera” means that the world 3D points are projected to the image surface by central
projection. The central projection is obtained by intersecting the imaging surface with the lines
that connect the 3D points with a single point that is called the camera center. It is possible to
deal with general mirror shapes and placements [4] but the geometry of the central cameras is
usually simpler. Furthermore, there is a large amount of work considering the central projection
model (the standard cameras) which can be directly applied (e.g. [6]).

3 Components

The first step in assembling the system is choosing an appropriate mirror and an appropriate
lens for the camera. In this Section we discuss which characteristics are important and give
an account of the choices we made. Also we describe the basic calibration of the camera-lens
system.
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3.1 Choosing a mirror

There is a number of producers of the hyperbolic mirrors in the market (e.g Panorama Eye [9] ,
Kaidan [1]). Except for the quality of the mirror probably the most important parameter is the
maximal upward view angle indicated in Figure 1.

We already owned a mirror acquired from Accowle Company, Ltd. (see [9]). In [7], a report
is given of the designing and manufacturing process that resulted in the production of the type
of mirror we have.

Our specific mirror has a maximal upward view angle of 30◦. Furthermore, the parameters
of our mirror given by the producer are a = 42.0882 and b = 25.0915. The diameter of the outer
rim of the mirror was 61mm.

3.2 Choosing a lens

Apart from the normal lens properties that should be taken into account, such as achromaticity
and low lens aberrations, special care must be taken when choosing a lens for omnidirectional
vision sensor. Below, we will explain which characteristics are to be preferred and why.

Field of view The camera-lens field of view, depending on the focal length of lens, and the
size of the mirror will determine which part of the mirror will be visible in the images.
Typically a field of view is chosen such that the whole mirror is visible. There are also
lenses with variable field of view, which cost a little bit more. With such a lens it is possible
to tune the field of view so the mirror will perfectly fit in the image. In our case we choose
a lens with a fixed field of view, that was somewhat smaller than the perfect size. This
results in an image which does not capture the whole mirror, but has the advantage the
part of the mirror that is visible has a higher resolution (also see Figure 2).

Minimal working distance The mirror is often designed in such a way that second mirror
focal point is located close to the mirror itself. Because the optical center of the lens (i.e.
camera center) is positioned on this second focal point, the camera is also close to the
mirror. For our mirror the optical center was about 11 cm from the mirror. The goal is to
get a sharp image of the scenery reflected in the mirror. To get a sharp image of a point
in the scenery the lens has to be focused on a plane just behind the point where the ray
of the scenery point intersects with the mirror [2]. Thus in order to get a sharp image of
the scenery the lens has to be able to focus on the mirror.

Depth of field The mirror has a certain depth. It should be possible to obtain sharp image of
the whole mirror. Unfortunately most lenses have small depth of field at short distances
and often only a part of the mirror can be seen sharply. The depth of field can be somewhat
increased if the amount of light that pass through the lens is reduced by closing the iris
but this can lower the quality of the images.

3.3 Lens-camera model and calibration

A world point X (now in homogeneous coordinates) is projected to the image point xim =
(

xim yim 1
)T

using the standard perspective camera equations:

xim = PX = KR [ I |C ] X (2)

where P is the 3 × 4 projection matrix that can be decomposed as described above. Here C is
a 3 dimensional vector that represents the position of the camera center. The I above denotes
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Figure 1: A side view of our camera-mirror system. At the bottom the regular firewire camera
is visible with the lens attached to it. On the lens a hollow extension tube is mounted which
positions the mirror on the right distance. On top of the image of the camera system the
hyperboloid function is plotted with the first focal point, F1, at the upper part, located inside
the mirror, and the second focal point, F2, coinciding with the optical center inside the lens.
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the 3 × 3 identity matrix. The matrix R is a 3 × 3 rotation matrix that describes the rotation
of the camera with respect to the world frame. The matrix K is the camera calibration matrix:

K =





fx s x0

0 fy y0

0 0 1



 (3)

where fx and fy are the scale factors in x and y directions, s is skew and (x0, y0) are the
image coordinates of the projection of the camera optical center. There is a large set of camera
calibration techniques that can be used to estimate the matrix K [6, 12, 5]. Skew s is often close
to 0 since the pixels are usually rectangular and fx = fy for square pixels.

Most lenses are not ideal and will introduce additional distortions. A common type of
distortion is the radial distortion that can be modeled by:

xim,d = xc + L(r)(xim − xc) and yim,d = yc + L(r)(yim − yc) (4)

where r =
√

(xim − xc)2 + (yim − yc)2 and L(r) = 1+k1r+k2r
2+ .... Here xim,d, yim,d represent

the actual image position after distortion. The distortion parameters xc, yc, k1, k2, ... become
additional parameters to be estimated during camera calibration. The uneven coefficients are
usually omitted since they are expected to be zero for standard lenses. The radial distortion
center is often assumed to coincide with the camera optical center xc = x0, yc = y0. Typically
the lenses with wider field of view have larger distortions. A lens with a medium field of view
is used for the camera-lens-mirror systems discussed here and the lens distortions can be well
described by just a few coefficients. In our case using just k2 was enough.

4 Assembling and calibrating the camera-lens-mirror system

A common problem in assembling the system is placing the camera such that the camera (lens)
center coincides with the second focal point of the hyperbolic mirror. Only then the whole
camera-lens-mirror system can be described by the central camera model. The ideal procedure
for finding the correct position of the camera with respect to the mirror would be: find the
positioning for which the whole system can be ”best” described as a central camera. The ”best”
can be defined as some reconstruction error of a known calibration object. However this is quite
difficult to realize and the following two practical procedures are usually used.

4.1 Assembling by aligning with the rim of the mirror

A common procedure assumes that the outer rim of the mirror is at least partially visible in
the camera images [3]. First, the perimeter of the outer rim is measured. The camera-lens is
calibrated using some standard technique. The equations from Section 3.3 are used to predict
how the outer rim of the mirror with known perimeter would look like if the camera and mirror
are placed correctly. The camera and mirror are then aligned by aligning the predicted image
of the rim and the current image, see Figure 2.

4.2 Assembling by calculating the camera optical center

The position of the second focal point, F2, is often specified by the mirror producers or it can
be calculated. In our case F2 was at 116mm from the top rim of the mirror. Another way of
assembling the system is to estimate the position of the camera (lens) center and then place the
mirror such that the second focal point F2 coincides with the camera center.

Most lenses have the optical axis in the middle. In our case it is possible to align the mirror
axis with the lens axis relatively accurately by using just an extension tube, Figure 1. The
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Figure 2: An example calibration image. The predicted image of the outer mirror rim, presented
by the dashed circle, coincides with the actual outer rim that is partially visible in the image.

distance of the camera center from the top rim of the lens is denoted by h. The length of the
tube plus the unknown h should be such that the camera center is placed at the mentioned
116mm from the top rim of the mirror.

A simple procedure to estimate h is the following. A calibration object is placed in front of
the camera. Let the position of a point on the object be described in the camera coordinate
system by Xc = [xcyczc]

T and its image projection by xim. We measure the perpendicular
distance of the point from the top rim of the lens d and we have zc = d + h. It is easy to
show that from xim = KXc we get two linear equations where h,xc and yc are unknown. If we
move the object approximately parallel to the camera axis such that xc and yc remain the same
for each new distance d two more linear equations are obtained. As the result we get an over
determined linear system that can be solved for the unknown h.

4.3 Calibration

Once the camera-lens is calibrated and the mirror properly placed there is in principle no need for
further calibration. However, the presented simple assembling procedures introduce additional
errors. Therefore it is often beneficial to reestimate some of the parameters. In [8] we find
a simple procedure for parameter reestimation which is an extension of the standard camera
calibration [5]. The parameter reestimation can be seen as the final fitting of the central camera
model to the camera geometry. For the calibration results for our camera see Figure 3.

The parameter reestimation could sometimes lead to reasonable models even when there were
large errors introduced in camera mirror positioning. An interesting reestimation procedure is
given in [10] where also the shape of the mirror is reestimated using a polynomial approximation.
More on dealing with non central cameras and approximate central models can be found in [4].

5 Single view geometry

We briefly present here the geometric model describing the whole camera-lens-mirror system.
For a more elaborate discussion on this topic see [3].
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a) Calibration errors using only the coefficient k2 for the radial distortion. Average error is 0.28
pixel (standard deviation 0.23) and 0.0018 radians (standard deviation 0.0013).
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b) Calibration errors, no radial distortion and fx = fy. Average error is 0.42 pixel (standard
deviation 0.37) and 0.0028 radians (standard deviation 0.0016)

.

Figure 3: Calibration results. We used 10 images where the calibration object (see the top image)
was placed at various orientations and positions around the camera.

5.1 World to image projection

A 3D world point X is first projected to the point Xm on the mirror surface. The projection is
obtained by intersecting the mirror surface with the line connecting the origin F1 and X. From
(1) we get:

Xm =
(

x y z 1/λ(X)
)T

, (5)

where

λ(X) =
b2(−ez − a

√

x2 + y2 + z2)

b2z2 − a2(x2 + y2))
(6)

selects the correct intersection. The point Xm on the mirror is then projected to the image using
the standard perspective camera equations xim = KR [ I |C ] Xm. The camera center should

coincide with the second focal point of the mirror. Therefore we have C =
(

0 0 2e
)T

. Usually
the camera is aligned with the axis of the mirror and the R is the identity matrix.

5.2 Image to world projection

From an image point xim we first construct a ray connecting the image point and the camera
center at F2. In the coordinate system centered at F2 the image point corresponds to the point
on the virtual imaging surface X(F2) = (KR)−1xim. The intersection of this ray with the mirror
surface is given by (7) and (8) which are derived from (5) and (6).

Xm(F2) =
(

x y z 1/λ(X)
)T

, (7)

where

λ(X) =
b2(ez + a

√

x2 + y2 + z2)

b2z2 − a2(x2 + y2))
. (8)

The mirror point Xm in the coordinate system centered at F1 is

Xm(F1) = Xm(F2) −
[

C
0

]

. (9)
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The ray connecting the origin F1 and the mirror point Xm(F1) defines the 3D world points that
project to the image point xim.

6 Conclusions

We described a number of practical issues with building and calibrating an omnidirectional
camera. Hopefully this report can be useful for anyone trying to build a wide view camera using
a hyperboloid mirror and a regular camera. A MATLAB implementation of the basic geometric
transformations is provided in the Appendix.

7 Appendix: Basic geometry - Matlab implementation.

Transforming a 3D world point to an image point:

[rXim]=W2Hyp(rXw,K,a,b)

%Input:

% rXw (3 x N) - set of N points in the world coordinates

% K (3 x 3) - camera calibration matrix

% a,b - hyperbolic mirror parameters

%Output:

% rXim (3 x N) - set of N points in the image coordinates - rXim(3,:)=1

e=sqrt(a^2+b^2);%eccentricity

Tc=[0 0 -2*e]’;%translation from first focal point to the second one

Rc=eye(3);%this should be used if the camera was tilted

lambda=b^2*(-e*rXw(3,:)-a*sqrt(rXw(1,:).^2+rXw(2,:).^2+rXw(3,:).^2))./(b^2*rXw(3,:).^2-a^2*(rXw(1,:).^2+rXw(2,:).^2));

rXm=repmat(lambda,3,1).*rXw;

rXim=K*Rc*(rXm-repmat(Tc,1,size(rXm,2)));

rXim=rXim./repmat(rXim(3,:),3,1);

Transforming an image point to a 3D ray (from the camera center):

function [rX]=Hyp2W(rXim,K,a,b)

%Input:

% rXim (3 x N)- set of N points in the image coordinates

% K (3 x 3) - camera calibration matrix

% a,b - hyperbolic mirror parameters

%Output:

% rX (3 x N) - set of N points in the mirror coordinates (on the mirror)

e=sqrt(a^2+b^2);%eccentricity

Tc=[0 0 -2*e]’;%translation from first focal point to the second one

Rc=eye(3);%this should be used if the camera was tilted

rXc=inv(K*Rc)*rXim;

rXc=rXc./repmat(rXc(3,:),3,1);

lambda=b^2*(e*rXc(3,:)+a*sqrt(rXc(1,:).^2+rXc(2,:).^2+rXc(3,:).^2))./(b^2*rXc(3,:).^2-a^2*(rXc(1,:).^2+rXc(2,:).^2));

rX=repmat(lambda,3,1).*rXc+repmat(Tc,1,size(rXim,2));
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