The californium source in our prototype is known as ULS-87, and was assayed at  $8.94\times10^6$  neutrons/sec on 7/11/1974. This implies about 4 micrograms of  $^{252}$ Cf, assuming pure  $^{252}$ Cf, on that date; there are about  $2.3\times10^6$  neutrons/sec/microgram. Working through until today, this would imply about 380 fissions/sec and 1400 neutrons/sec today from  $^{252}$ Cf, and then roughly another 60 fissions/sec and 200 neutrons/sec from the daughter  $^{248}$ Cm, for about 1600 neutrons/sec total.

The key numbers for <sup>252</sup>Cf are a half-life of 2.645 years, a spontaneous fission branching ratio of 3.1%, and 3.67 neutrons/fission; for <sup>248</sup>Cm a half-life of 3.4×10<sup>5</sup>y, a spontaneous fission branching ratio of 8.4%, and 3.4(? assumption) neutrons/fission.

Some additional detail about this source was provided by Chris Marcus of Oak Ridge. The source itself is a `cermet' of  $PdCf_2O_3$ . He says that the Cf is  $70-80\%^{252}Cf$ , and  $>19\%^{249}Cf + ^{250}Cf + ^{251}Cf$ . I presume this is by mass. So a reasonable guess is that the 4 micrograms of  $^{252}Cf$  amounts to 75% of the total Cf, and that about 8% of the total, or 0.44 micrograms, is  $^{250}Cf$ .

On 7/11/74 about 5000 neutrons/sec would then come from  $^{250}$ Cf, which is an insignificant portion of the  $8.94\times10^6$  neutrons/sec measured at that time. Today, however, there would be about 900 neutrons/sec from  $^{250}$ Cf.

The key numbers for <sup>250</sup>Cf are a half-life of 13.1 years, a spontaneous fission branching ratio of 0.077%, and 3.51 neutrons/fission.

Thus the total neutron flux from ULS-87 is thus about 2500 neutrons/second, which is comprised of 1400 neutrons/second from <sup>252</sup>Cf, 200 neutrons/second from the daughter <sup>248</sup>Cm, and about 900 neutrons/second from <sup>250</sup>Cf.

We see about 1000 neutrons/sec in the prototype. One would crudely conclude that we have roughly 40% efficiency, which is actually quite good.

Details about this source, including its size and capsule, are in the attached source sheets. Initially I had requested the smaller second source, USS-6, described on the second page of the attached sheets, and my original numbers were based on its activity. I checked today with the source pail, and indeed, we have ULS-87.

### 252Cf UNIVERSITY NEUTRON SOURCE INFORMATION





Date

|  | FABR |  |  |
|--|------|--|--|
|  |      |  |  |

University of California, Santa Barbara

| 2022 00 20 20 | Source | Туре | Universi | ty. | Long |
|---------------|--------|------|----------|-----|------|
|---------------|--------|------|----------|-----|------|

Source No. - 27

| Primary Source        | e Encapsul | lation . |         | Secon            | dary Contain    | <u>er</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|------------|----------|---------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. of Source Capsule | s <u>1</u> |          |         | Container Mate   | rial SS         | and the second s |
| Capsule Material      | 90% Pt -   | 10% Ir   |         | External Diame   | ter <u>1,76</u> | ± 0.10 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Inner Capsule Wall Th | ickness    | 0.25 ± 0 | 0.012 m | n External Lengt | <u> 48.50</u>   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Outer Capsule Wall Thickness 0.50 ± 0.012 mm Active Length 15.00 Closure Material "Braze 560"

Closure Material TIG Fusion Weld

#### CLOSURE TEST

Method

Each source capsule is decontaminated after closure until all exterior surfaces are free of transferable contamination as determined by a wipe test. After decontamination the capsule is immersed in a helium atmosphere with a pressure of at least 30 pounds per square inch for a period of 30 minutes, then transferred to a helium leak detector. The leak detector has a minimum sensitivity of 2.8 x 10-8 cc helium per second.

The finished source was found free of detectable leaks on

#### SOURCE STRENGTH

Calibration

The source described above has been calibrated at the Savannah River Laboratory by comparing its strength to that of a 252 Cf source calibrated by the National Bureau of Standards The comparison is made by counting on a BF3 Neutron Detector. The 252Cf content of the source is the effective or net californium content calculated from the emission rate and is given in equivalent weight units assuming 2.311 x 106 neutrons per second per microgram of 252Cf. Therefore, corrections for self absorption of neutrons in the capsule walls and isotopic content of californium are unnecessary by the source user.

Strength

The neutron emission rate of this source was found to be neutrons per second with a standard error of  $\pm 3.0\%$  an effective the denvith a standard error of ± 252Cf content of 7-11-74

> inshah /RIH S. Mirshak, Director

Nuclear Engg and Materials Section

Savannah River Laboratory F. I. du Pont de Nemours

# 252 Cf NEUTRON SOURCE INFORMATION

| 0 | Section for the contract of th | 15、"海水水水"的"15"。 | 200          | and the same of the |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------------|
|   | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tontie          | 3637         | -:177               |
| 4 | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Januc           | <b>y</b> 11, |                     |

| 16          |                                 |          |
|-------------|---------------------------------|----------|
| 7-1         | and a second indicate addresses | ***      |
| ハベナナモン ペイエフ | - רויטנוו או דרו כנכר אחד       | 44' 112' |
|             | FABRICATED                      | D A2TE 6 |
|             |                                 |          |

University of California, Santa Barbara

| Source Type   | University Source (Short) |                   | 90% Pt - 30% Jr |
|---------------|---------------------------|-------------------|-----------------|
| saurce ident  | Fication Number usi-6     | Capsule Material  | enclosed in 88  |
|               | gth 33.02 mm              | External Diameter |                 |
| 7.17          | e Wall Thickness 0.10 mm  | Closure Material_ | "Braze 5/11"    |
|               | e Wall Thickness 0.15 mm  | Closure Material  | "Braze 560"     |
| SS Capsule Wa | all Thickness 1.59 mm     | Closure Material  | TIG Fusion Weld |
| CLOSURE TEST  |                           |                   |                 |

#### Method

Each source capsule is decontaminated after closure until all exterior surfaces are free of transferable contamination as determined by a wipe test. After decontamination the capsule is immersed in a helium atmosphere with a pressure of at least 30 pounds per square inch for a period of 30 minutes, then transferred to a helium leak detector. The leak detector has a minimum sensitivity of 2.8 x 10 8 helium per seconde

The finished cource was found free of detectable leaks on

## SOURCE STRENGTH

Calibration The soul described above has been calibrated at the Savannah River Laboratory by comparing its strength to that of a 2520f source calibrated by the National Bureau of Standards. The neutron emission rate of each source is determined by immersing the source in a manganese sulfate bath, then measuring the induced manganese activity by calman spectrometry. The neutron emission rate stated for each source is the measured emission rate in the bath. 252cf content of the source is the effective or net californium content calculated from the emission rate and is given in equivalent weight units assuming 2.311 x 100 neutrons per second per microgram of 252cf. Therefore, corrections for self absorption of neutrons in the capsule walls and isotopic content of californium are unnecessary by the source user.

# Strength

The neutron emission rate of this source was found to be neutrons per second with a standard x 10<sup>6</sup> 1.236 an effective error of ±3.0% ug with a standard error of 222 content of 9-3070

Scott, Chief

Planning & Development Branch Savannah River Operations Office, USAEC

Director H. J. Groh Separations Chemistry and Engineering Section Savannah River Laboratory