

Earth and Planetary Science Letters 185 (2001) 135-147

EPSL

www.elsevier.com/locate/epsl

²⁶Al, ¹⁰Be and U-Th isotopes in Blake Outer Ridge sediments: implications for past changes in boundary scavenging

Shangde Luo^{a,*}, Teh-Lung Ku^{a,1}, Lei Wang^{a,2}, John R. Southon^b, Steve P. Lund^a, Martha Schwartz^a

Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA
 Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 20 March 2000; accepted 4 December 2000

Abstract

We have investigated the distributions of 26 Al, 10 Be, U–Th isotopes, and stable 27 Al and 9 Be in core CH88-11P (30°40′N, 74°41′W; 3337 m) from the Blake Outer Ridge (BOR) in the western North Atlantic, an area that is characterized by high terrigenous input. Results show authigenic 26 Al/ 27 Al of $<2-8\times10^{-14}$ (atom/atom), authigenic 10 Be/ 9 Be of $0.5-2.6\times10^{-8}$ (atom/atom), $<0.2-1.8\times10^{6}$ atoms/g of 26 Al, and $5.3-15.1\times10^{8}$ atoms/g of 10 Be in the core over the last glacial/interglacial cycle. These values, as well as total 230 Th_{ex}/ 232 Th and 10 Be/ 9 Be ratios, were all at their minima during the last glacial maximum (LGM), reflecting intensified terrestrial influx to the area. Aluminosilicate material (clays) in this influx preferentially scavenged 230 Th over the two other particle-reactive nuclides, 26 Al and 10 Be, such that their boundary scavenging during LGM followed the order 230 Th $>^{10}$ Be $>^{26}$ Al, as opposed to 10 Be $\geq ^{230}$ Th $>^{26}$ Al in the Holocene. They appear at variance with the order 10 Be $>^{26}$ Al $\approx ^{230}$ Th as would be predicted from the relative particle reactivities of the three species. These scavenging characteristics point to 10 Be/ 26 Al as a potentially more suitable proxy for paleoproductivity than 10 Be/ 230 Th_{ex}. Mass-balance considerations for 26 Al and 10 Be show a five-fold LGM-to-Holocene increase in deep-water circulation in the study area, with little change in ocean productivity except during the deglaciation when it increased noticeably. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Blake-Bahama Outer Ridge; Be-10; Al-26; Th-230; productivity; paleo-oceanography

1. Introduction

In the marine environment, the isotope pairs ²⁶Al-²⁷Al, ¹⁰Be-⁹Be and ²³⁰Th-²³²Th each consists of a component (²⁶Al, ¹⁰Be, ²³⁰Th) with dominantly authigenic source and pathway, and a component (²⁷Al, ⁹Be, ²³²Th) that owes its origin essentially to detrital input from continents. In addition, the three elements Al, Be, and Th

^{*} Corresponding author. E-mail: sluo@usc.edu

¹ Also corresponding author. E-mail: rku@usc.edu

² Present address: EMS Laboratories, Pasadena, CA 91105, USA.

show different particle reactivities, hence different scavenging times, in the ocean. Because of these characteristics, the distributions of their isotopes in marine sediments contain information on past variations in particle flux, ocean mixing, and productivity ([1,2] and references therein). With these considerations in mind, we report here an investigation of the downcore distribution of isotopes of Al (²⁶Al, ²⁷Al), Be (¹⁰Be, ⁹Be), U (²³⁸U, ²³⁴U), and Th (²³²Th, ²³⁰Th) in a sediment core from a deep-water ocean-margin area of the Atlantic.

Cosmogenic ²⁶Al (half-life 0.72 Myr) and ¹⁰Be (half-life 1.5 Myr) enter the ocean primarily through wet/dry precipitation and deposited to the seafloor by particle scavenging. Advances in accelerator mass spectrometry (AMS) have facilitated their use as geochemical and geophysical tracers in the ocean. However, the tracer utility of ²⁶Al has been less explored than that of ¹⁰Be owing to the low production rate of ²⁶Al in the atmosphere and the high abundance of ²⁷Al in the crust [3–5]. The few AMS ²⁶Al analyses thus far performed on marine deposits were mostly from the Pacific Ocean where the deposition rate of terrigenous ²⁷Al is low [5–8]. The seawater concentration of ²⁶Al has only recently been found to be of the order of 10^2 atoms/kg [1].

²⁶Al in deep-sea sediments resides mainly in the authigenic (hydrogenous) phase [2]. An NaOHleach technique has been developed [2] to quantitatively extract ²⁶Al from sediments with minimal contamination of the detrital ²⁷Al. Using this technique, we measured ²⁶Al and ¹⁰Be in CH88-11P, a piston core retrieved from the Black Outer Ridge (BOR). This first data set on ²⁶Al from the Atlantic Ocean provides new insights into the geochemical behavior and tracer utility of ²⁶Al in an ocean-margin area with high terrestrial (hence ²⁷Al) input. Along with data on uranium-series isotopes, it permits us to assess past changes in terrigenous particle flux and ocean productivity at BOR, and its water exchange with the open Atlantic.

2. Sampling location and methods

The 17-m core CH88-11P was collected in 1988

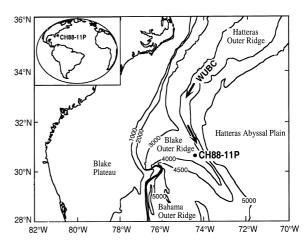


Fig. 1. Map of study area showing the location of CH88-11P (30°40′N, 74°41′W; 3337 m). The main axis of the western boundary undercurrent (WBUC) is indicated by arrows at \sim 4000 m isobath. CH88-11P accumulated \sim 4 cm/kyr in the Holocene and \sim 50 cm/kyr during LGM [14]. It has \sim 40% carbonate near the core top, which decreases to <10% in the LGM section [9]. Biogenic silica decreases from \sim 4% in Holocene to <1% in the LGM sediments.

aboard R/V Cape Hatteras from the Blake Outer Ridge (30°40'N and 74°41'W, 3337 m) [9]. The site represents a 700 km long contourite drift deposit on the continental rise off SE U.S. (Fig. 1). Coring was done on a topographic high along the crest of the ridge minimally influenced by turbidites or debris-flows which are further barred from entering the area by the vigorous northerly transport of the Gulf Stream along the western margin of the Blake Plateau. Formation of the BOR drifts is primarily caused by the southward transport of abyssal sediments entraining the western boundary undercurrent (WBUC) [9].

Selected 5-cm intervals were analyzed for authigenic Al (²⁶Al and ²⁷Al) and Be (¹⁰Be and ⁹Be) using the NaOH-leaching technique [2]. Analyses were made by AMS (²⁶Al and ¹⁰Be), atomic absorption spectrophotometry (²⁷Al) and electroncapture gas chromatography (⁹Be) [13,14]. For the ²⁶Al analysis, ²⁷Al present in the NaOH leachate was used as carrier for ²⁶Al. During the first batch of experiments involving eight samples, the <1 mg ²⁷Al recovered from 1 g sized samples gave too weak a current for the AMS ²⁶Al anal-

Table 1 10 Be and 26 Al^a in core CH88-11P and model estimates of water replacement rate constant (k_w), water-column residence time of 10 Be (τ_{Be}), and material fluxes to the BOR seafloor over the past 100 ka

Depth (cm)		¹⁰ Be (10 ⁸ at/g)	$f_{ m Be10}^{ m c}$	$f_{ m Be9}^{ m c}$	²⁶ Al (10 ⁶ at/g)	$f_{ m Al27}^{ m c}$	$k_{\rm w}$ (10 ⁻² yr ⁻¹)	$ au_{\mathrm{Be}}$ (yr)	F _p (mg/cm ² /yr)	$F_{\rm p}^*$ (mg/cm ² /yr)	$(F_p^*-F_p)$ $(mg/cm^2/yr)$
7.5	1.5	10.5 ± 0.2	0.81	0.35	0.6 ± 0.2	0.018	4.4 ± 1.8	18 ± 6	3.7 ± 1.3	40 ± 14	36 ± 14
27.5	5.4	11.8 ± 0.2	0.81	0.42	nm						
87.5	11.9	6.2 ± 0.1	0.48	0.24	< 0.2	0.006	> 2.3	< 5	> 18.1	> 138	> 120
107.5	12.5	8.0 ± 0.1	0.54	0.23	< 0.2	0.006	> 4.0	< 6	> 16.9	>119	> 102
127.5	13.1	6.4 ± 0.1	0.37	0.13	nm						
279.0	16.9	5.7 ± 0.1	0.31	0.17	nm						
339.0	18.5	5.3 ± 0.1	0.19	0.10	< 0.4	0.008	> 0.8	< 8	> 29.2	> 88	> 59
439.0	21.0	6.9 ± 0.1	0.35	0.14	nm						
499.0	22.5	8.9 ± 0.1	0.57	0.22	0.8 ± 0.3	0.016	1.0 ± 0.7	21 ± 9	5.1 ± 2.2	35 ± 14	30 ± 14
722.0	33.5	11.0 ± 0.1	0.69	0.38	nm						
842.0	42.8	10.9 ± 0.1	0.70	0.40	nm						
961.0	51.7	8.9 ± 0.1	0.69	0.42	nm						
1342.0	67.1	8.5 ± 0.1	0.56	0.22	nm						
1542.0	78.4	13.7 ± 0.2	0.83	0.46	1.6 ± 0.4	0.024	1.5 ± 0.6	35 ± 8	1.5 ± 0.3	21 ± 5	19 ± 5
1622.0	86.2	15.1 ± 0.2	0.83	0.49	1.8 ± 0.2	0.026	1.1 ± 0.3	21 ± 3	2.3 ± 0.3	34 ± 5	32 ± 5
1702.0	99.0	15.1 ± 0.2	0.83	0.48	1.7 ± 0.5	0.021	1.5 ± 0.7	29 ± 9	1.7 ± 0.5	25 ± 7	23 ± 7

 F_p : terrigenous, F_p *: terrigenous+biogenic, and $(F_p$ *- F_p): biogenic.

yses. Therefore, only the ¹⁰Be results are reported for these eight samples.

Al and Be were purified by cation exchange (Bio-Rad, AG 50 W×12, 200–400 mesh, 0.5 M HCl conditioned [14]). Be was eluted off with 7 cv (column volume) of 1 M HCl, and Al, with 3 cv of 4 M HCl. They were separately precipitated as Be(OH)₂ and Al(OH)₃, converted to BeO and Al₂O₃ in a Pt crucible by burning over a Bunsen burner for ~ 1 h, and then admixed with Ag powder in a 1:3 proportion for AMS analyses.

Totally dissolved ~ 1 -g samples were also analyzed for 27 Al, 10 Be, and 9 Be, in addition to isotopes of U (238 U and 234 U) and Th (232 Th and 230 Th) [14]. 26 Al was not measured because of too low 26 Al/ 27 Al ratios. In these samples, further separation of Be from Ti after ion exchange was needed by dissolving the Be(OH)₂ precipitate with 3 M NaOH, removing the insoluble Ti(OH)₄ by centrifugation, and re-precipitating Be(OH)₂ from the supernatant by neutralizing with HCl.

3. Results and discussion

For detailed measurement data on Al, Be and/ or U-Th isotopes, see Tables A1-A3 in the **EPSL Online Background Dataset**³.

3.1. Influence of terrestrial particle flux on ¹⁰Bel⁹Be in sediments

 10 Be and 9 Be in both the NaOH leachates and total sediments in CH88-11P are shown in Table 1 and Fig. 2a. The leached ratio of 2.6×10^{-8} in surface sediment, which reflects the dissolved 10 Be/ 9 Be in Holocene deep water [2], agrees well with 2.4×10^{-8} measured at a nearby ocean-margin site by Bourles et al. [15] using a leaching technique involving 1 M MgCl₂, 1 M NaOAc at

^aDetailed data are available from the **EPSL Online Background Dataset**. nm, not measured. Upper-bound ²⁶Al values are based on detection-limit estimates. The quoted errors for ²⁶Al and ¹⁰Be are one standard deviation derived from counting statistics; those for the model parameters were estimated through error propagation.

^bThe chronology is based on correlating the records of δ^{18} O, carbonate, and paleomagnetism in the core [9,10] with those in other AMS-¹⁴C dated North Atlantic cores [11,12].

 $^{^{}c}f_{Be10}$ and f_{Be9} are fractions of authigenic ^{10}Be and ^{9}Be calculated from the Be data (Fig. 1a) via Eqs. 1 and 2, respectively; f_{Al27} is the fraction of authigenic Al determined by NaOH leaching.

³ http://www.elsevier.nl/locate/epsl; mirror site: http://www.elsevier.com/locate/epsl

pH \sim 5, but lower than $\sim 4 \times 10^{-8}$ [16] for seawater at similar depths in the open N. Atlantic (e.g. Sargasso Sea). The lower ratio at BOR probably reflects the relatively high lithogenic particle flux at ocean margins.

Deep-water ¹⁰Be/⁹Be of 0.5×10⁻⁸ in LGM is about one fifth the Holocene ratio. The low LGM value, also seen in the total ¹⁰Be/⁹Be (Fig. 2a), can be chiefly ascribed to an increase of continental ⁹Be flux to the core site during glacial times. Data on Th and Al, to be shown later, support this possibility. Another possibility could be an LGM reduction of water exchange between BOR and the open Atlantic, as the reduction would decrease the boundary scavenging of ¹⁰Be, hence the authigenic ¹⁰Be/⁹Be ratio in glacial sediments.

While particle scavenging may decrease seawater concentrations of both 10 Be and 9 Be, the 9 Be decrease is countered by a release of 9 Be from lithogenic particles. This counter effect is negligible for 10 Be as the dissolved 10 Be is mostly of atmospheric origin. Thus a high lithogenic influx during LGM tended to lower the seawater concentration of 10 Be but not that of 9 Be. The high LGM lithogenic flux also had the effect of lowering the fraction of authigenic 10 Be ($f_{\rm Be10}$) in sediments, which can be estimated as:

$$f_{\text{Be10}} = 1 - \frac{(C_{\text{Be10}}/C_{\text{Be9}})_{\text{d}}}{(C_{\text{Be10}}/C_{\text{Be9}})_{\text{t}}}$$
(1)

where C is concentration, with subscripts d and t denoting detrital and total sediments, respectively. The detrital ¹⁰Be/⁹Be at BOR can be taken as $(0.22 \pm 0.03) \times 10^{-8}$ because (1) detrital sediments from an adjacent station DSDP68-502 (11°30'N, 79°23′W, 3051 m) has a ratio of (0.21 ± 0.02) $\times 10^{-8}$ [15], and (2) a riverine particulate 10 Be/ 9 Be ratio of $(0.23 \pm 0.03) \times 10^{-8}$ is estimated from the average 10 Be concentration of $(4.42 \pm 0.55) \times 10^8$ atoms/g (corrected for lower 10Be retentivity in sand) in modern river sediments along a transect from the Atchafalaya River to the Gulf of Mexico [17], assuming 2.8 ppm of ⁹Be in riverine particles [18]. We estimate from Eq. 1 that $f_{\text{Be}10}$ varies from ~ 0.2 during the LGM to ~ 0.8 during interglacial periods (Table 1). Knowing $f_{\text{Be}10}$, we also calculate the fraction of authigenic ⁹Be by:

$$f_{\text{Be9}} = \frac{(C_{\text{Be10}}/C_{\text{Be9}})_{\text{t}}}{(C_{\text{Be10}}/C_{\text{Be9}})_{\text{a}}} f_{\text{Be10}}$$
(2)

where subscript a stands for authigenic. f_{Be9} was ~ 0.1 during LGM and ~ 0.4 during interglacial times (Table 1). Thus both ^{10}Be and ^{9}Be in LGM sediments at BOR are mostly of detrital origin as a result of intensified continental flux.

3.2. ²⁶All²⁷Al in sediments and tracing authigenic deposition of ²⁷Al

The low authigenic Al of 1-2% in CH88-11P (Table 1), as opposed to $\sim 17\%$ in Pacific pelagic sediments [14], has contributed to the relatively large measurement errors of ²⁶Al/²⁷Al. Fig. 2b shows an authigenic 26 Al/ 27 Al of $(3 \pm 1) \times 10^{-14}$ in surface layers, which is about 4-6 times lower than that of $(11-19)\times10^{-14}$ in equatorial Pacific surface sediments [14]. For some LGM sediments, only the upper-limit values can be assigned. Taking these ratios as modern deep-water ²⁶Al/²⁷Al, and mean ²⁷Al concentrations of 20 nM in deep N. Atlantic [19] and 2 nM in deep equatorial Pacific [20], we estimate deep-water ²⁶Al concentrations of 360 ± 120 atoms/l in the N. Atlantic and 130-230 atoms/l in the equatorial Pacific. These estimates are in the same order as the measured 20-200 atoms/l for the upper 1000 m of the central equatorial Pacific [1]. Thus in spite of the one-order difference in ²⁷Al concentration between the two oceans at depth, the ²⁶Al concentrations are comparable, indicating that residence times of ²⁶Al at BOR and in the equatorial Pacific are similar. Using a 26 Al/ 10 Be of $(3.8 \pm 0.6) \times 10^{-3}$ in stratospheric air filter [21] and a global mean 10 Be flux of 1.2×10^6 atoms/cm²/yr [22], we estimate an atmospheric 26 Al flux of $(4.6 \pm 0.7) \times 10^3$ atoms/cm²/yr. This flux and the ²⁶Al concentration of 360 ± 120 atoms/l in BOR deep water give a residence time of ~ 26 yr for 26 Al, similar to that of ²³⁰Th [23] but at least one order smaller than that of ¹⁰Be in the open N. Atlantic [16].

The above discussion serves to sharpen the difference between Al and Be in their marine isotope

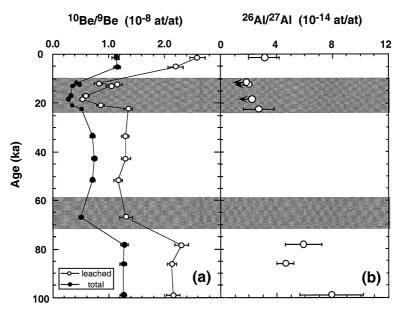


Fig. 2. (a) NaOH-leached and total 10 Be/ 9 Be and (b) NaOH-leached 26 Al/ 27 Al in CH88-11P. The arrows in (b) indicate the upper-bound 26 Al/ 27 Al values as dictated by the detection limits. Shaded areas delineate marine isotope stages 2 and 4.

geochemistries. In response to changes of terrigenous particle flux and ocean circulation, oceanic concentrations of ²⁷Al are subject to greater variations than those of ²⁶Al. In contrast, ⁹Be in the deep ocean shows a much more uniform distribution than ¹⁰Be. This difference in behavior between Al and Be reflects that whereas the fallouts of cosmogenic ¹⁰Be and ²⁶Al are more or less uniform over the world ocean, rock-derived 9Be and ²⁷Al are preferentially delivered to the Atlantic, and that the scavenging time of Al is much shorter than that of Be. For Be, its scavenging time is comparable to the ocean mixing time [16]. The pacificward enrichment of ¹⁰Be can be attributed to the 'nutrient' effect of accumulation of 10 Be in deep waters due to particle remineralization, while the near uniformity in ⁹Be could result from a chance balance between the input and the nutrient effect [24]. For the more reactive Al, the distributions of both ²⁶Al and ²⁷Al reflect their input patterns.

One would expect that ²⁶Al is subject to much less intense boundary scavenging than ¹⁰Be, and this we will show later to be the case at BOR. In fact, ²⁶Al shows even less intense boundary scav-

enging than ²³⁰Th, providing a more reliable tracer for flux of particles or particle-bound chemical species in the ocean. The tracer utility of ²⁶Al is also fostered by the constancy of ²⁶Al flux observed in equatorial Pacific sediments [14]. While an increased ²⁷Al flux occurs in the productive equatorial Pacific [25], there is no correspondence of an enhanced scavenging of ²⁶Al [14]. The oceanic distribution and scavenging of ²⁶Al and ²⁷Al may differ on account of their source–function differences.

Authigenic $^{26}\text{Al}/^{27}\text{Al}$ in CH88-11P shows a range of $< 1.8-7.9\times 10^{-14}$ during the last 100 kyr, with low values in the LGM interval reflecting the high continental particle input (Fig. 2b). As the atmospheric influx of ^{26}Al is rather uniform, this ratio should be inversely related to terrigenous particle flux and serve to constrain the authigenic ^{27}Al flux. For example, given a core top authigenic $^{26}\text{Al}/^{27}\text{Al}$ of $(3.1\pm1.1)\times 10^{-14}$ and an atmospheric ^{26}Al flux of $(4.6\pm0.7)\times 10^3$ atoms/cm²/yr, the present-day authigenic ^{27}Al flux at BOR should be $(1.5\pm0.6)\times 10^{17}$ atoms/cm²/yr or $6.6\pm2.6~\mu\text{g/cm}^2/\text{yr}$. For $f_{\text{Al}}\approx 0.02$ (Table 1) and an Al content of 8% in continental rocks

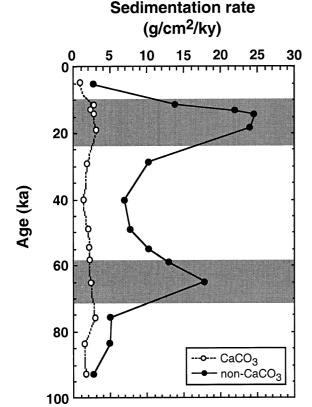


Fig. 3. Variations in carbonate and non-carbonate (terrigenous) sedimentation rates in CH88-11P, estimated based on $\delta^{18}O$ stratigraphy [9,10]. Shaded areas delineate marine isotope stages 2 and 4.

[18], the authigenic 27 Al flux is translated into a lithogenic particle flux of 4.1 ± 1.6 g/cm²/kyr for the Holocene, which agrees well with the δ^{18} O stratigraphy-based estimate (Fig. 3).

3.3. $^{230}Th_{ex}/^{232}Th$ as indicator of terrestrial particle flux

Shown in Fig. 4 is the distribution of Th isotopes, in which data on 230 Th_{ex} are of particular interest because 230 Th_{ex} has often been used to normalize water-column deposition rates of chemical species such as 10 Be [26–32]. Neglecting any 238 U– 234 U disequilibrium and assuming a detrital 230 Th/ 232 Th ratio of 0.6 ± 0.04 in BOR sediments [27], the decay-corrected activities of authigenic

²³⁰Th can be estimated as:

$$^{230}Th_{ex}=(^{230}Th_{m}-0.6\times^{232}Th_{m})e^{\lambda\, t}-^{238}U_{a}\times(e^{\lambda\, t}-1) \eqno(3)$$

where subscripts m and a denote measured and authigenic activities, respectively, λ is the decay constant of ²³⁰Th, and t is the sediment age. As the total ²³⁸U/²³²Th of ~0.6 in BOR sediments approximates those in marine aluminosilicate detritus [33,34], U in BOR sediments is essentially detrital in origin, a fact also indicated by the measured ²³⁴U/²³⁸U being mostly close to unity.

The 230 Th_{ex} activities mirror those of 232 Th and were three- to four-fold lower during oxygen isotope stages 2 and 4 than during interglacial times (Fig. 4). As 230 Th is precipitated from water-column at a constant rate whereas 232 Th is of terrigenous origin, the stages 2 and 4 230 Th_{ex}/ 232 Th minima and 232 Th maxima must reflect an increase of detrital sediment flux during glacial times. The δ^{18} O stratigraphy-derived sedimentation rates of non-CaCO₃ (terrigenous) material support this interpretation (Fig. 3), so do data on other drift sediment cores of the N. Atlantic [35,36].

3.4. Boundary scavenging at BOR: a comparison of ¹⁰Be, ²⁶Al, and ²³⁰Th

Preferential scavenging of ¹⁰Be over ²⁶Al at BOR over the last 100 kyr has led to a much higher (¹⁰Be/²⁶Al)_a, i.e. ¹⁰Be/²⁶Al of atmospheric origin, in CH88-11P (Fig. 5a) than the atmospheric production ratio of 260 ± 40 [21]. The inverse relationship between (¹⁰Be/²⁶Al)_a and detrital flux (Fig. 5a vs. Fig. 3) rules out high terrigenous flux as being responsible for the enhanced ¹⁰Be scavenging. The low glacial (¹⁰Be/²⁶Al)_a (Fig. 5a) may reflect a reduction in bioproductivity and/or water exchange between BOR and the open Atlantic. We will evaluate later these two possibilities using a mass-balance model.

At BOR, preferential scavenging of 10 Be over 230 Th also occurs during the Holocene (Fig. 5b), but the situation was reversed during the LGM. Given production rates of ~ 8.7 dpm/cm²/kyr for 230 Th and 1.2×10^6 atoms/cm²/yr [22] for 10 Be,

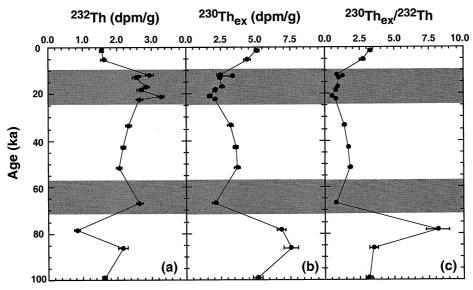


Fig. 4. (a) 232 Th, (b) 230 Th_{ex}, and (c) 230 Th_{ex}/ 232 Th in CH88-11P. The low ratios of 230 Th_{ex}/ 232 Th during glacial times reflect increased terrestrial sediment inputs to the area. Shaded areas delineate marine isotope stages 2 and 4.

CH88-11P should have a 10 Be/ 230 Th_{ex} ratio of 1.4×10^8 atoms/dpm barring lateral transport of 10 Be or 230 Th. This production ratio is exceeded by the Holocene ratios but is three times the LGM ratios in the core (Fig. 5b). The low LGM ratios cannot be attributed to changes in atmospheric production of 10 Be [29,37]. They most likely resulted from a preferential scavenging of 230 Th over 10 Be associated with the high terrigenous aluminosilicate (clay) flux during the LGM (Fig. 3).

That ²⁶Al/²³⁰Th_{ex} ratios are all lower than the production ratio of 5.4×10^5 atoms/dpm at the core site (Fig. 5c) also indicates the efficient boundary scavenging of ²³⁰Th. Owing to the strong affinity of Th to clay minerals [38], the high lithogenic flux into this N. Atlantic margin appears to preferentially scavenge ²³⁰Th over ²⁶Al. An alternative explanation for the low ²⁶Al/ ²³⁰Th_{ex} and ¹⁰Be/²³⁰Th_{ex} ratios would be a preferential transport of ²⁶Al and ¹⁰Be relative to ²³⁰Th via WBUC to the Southern Ocean. While this scenario would explain the high ¹⁰Be/²³⁰Th_{ex} ratios in Antarctic sediments [32], it would require more ²⁶Al to be exported from BOR than ¹⁰Be to satisfy the observed ¹⁰Be/²⁶Al and ²⁶Al/²³⁰Th_{ex} ratios in CH88-11P (Fig. 5a). This seems unlikely in

view of the short residence times of ²⁶Al and ²³⁰Th compared to those of ¹⁰Be in the ocean [1,2].

To conclude, the relative intensity in the boundary scavenging of 10 Be, 26 Al and 230 Th at BOR follows the orders $^{10}\text{Be} \ge ^{230}\text{Th} > ^{26}\text{Al during the}$ Holocene and $^{230}\text{Th} > ^{10}\text{Be} > ^{26}\text{Al}$ during the LGM. These sequences are at variance with the order $^{10}\text{Be} > ^{26}\text{Al} \approx ^{230}\text{Th}$ expected from the relative particle reactivities for the three species [1,2,26]. The difference could stem from the much increased terrigenous influx of clays at BOR, which favor the scavenging of ²³⁰Th. Apparently, ²⁶Al is much less sensitive to this boundary scavenging than either ²³⁰Th or ¹⁰Be, and as such, ratio ¹⁰Be/²⁶Al as a proxy for paleoproductivity [1,2] stands on a firmer ground than ratio ¹⁰Be/²³⁰Th_{ex}. As shown in Section 3.6, along with authigenic ¹⁰Be/⁹Be and ²⁶Al/²⁷Al, ¹⁰Be/²⁶Al can be used to quantitatively assess past changes in productivity and circulation of the study area.

3.5. Boundary scavenging of ²³⁰Th: cause and consequence

The deposition of ²³⁰Th_{ex} in CH88-11P, about 17 dpm/cm²/kyr in the Holocene and 56 dpm/cm²/

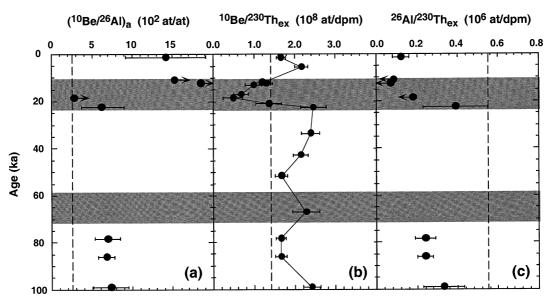


Fig. 5. (a) $(^{10}\text{Be}/^{26}\text{Al})_a$, (b) $^{10}\text{Be}/^{230}\text{Th}_{ex}$, and (c) $^{26}\text{Al}/^{230}\text{Th}_{ex}$ in CH88-11P. ^{10}Be was corrected for the detrital contribution via Eq. 1. Vertical dashed lines represent the expected ratios if no differential deposition of the nuclides of interest takes place. These ratios are: (a) $^{10}\text{Be}/^{26}\text{Al} = 2.6 \times 10^2$ atom/atom, (b) $^{10}\text{Be}/^{230}\text{Th} = 1.4 \times 10^8$ atoms/dpm, and (c) $^{26}\text{Al}/^{230}\text{Th} = 0.53 \times 10^6$ atoms/dpm. The arrows in (a) indicate the lower limits of $^{10}\text{Be}/^{26}\text{Al}$, and in (c), the upper limits of $^{26}\text{Al}/^{230}\text{Th}_{ex}$. Shaded areas delineate marine isotope stages 2 and 4.

kyr during the LGM, is higher than the watercolumn production by a factor of 2 and 6.4, respectively. Sediment-trap data from a middle Atlantic bight (MAB) site (water depth 2752 m) to the north show ²³⁰Th_{ex} flux-to-production ratios of 1.9, 2.0, and 2.2 at 452 m, 1757 m, and 2702 m, respectively [27]. The similarity of these ratios and their agreement with the Holocene ratio in CH88-11P indicate that (a) the collection efficiencies of these sediment traps are reasonably stable, (b) contributions of resuspended sediments from the sea floor to each of these traps are minimal, and (c) an intensified boundary scavenging of ²³⁰Th results in its higher than production flux. This last indication has not been fully appreciated, since unlike radiotracers such as ²³¹Pa and ¹⁰Be, ²³⁰Th has a very short oceanic residence time and its horizontal transport has generally been considered quite limited. Nevertheless, recent studies have increasingly pointed to the lateral migration of ²³⁰Th. Evidence comes from measurements and modeling of ²³⁰Th in seawater [39–41] as well as in particulates collected by sediment traps and cores ([27,43,44], this work). For example, the flux-to-

production ratio of ²³⁰Th at MAB increases considerably toward the coast, reaching values of > 10 at water depths < 500 m [27]. Over 90% of the ²³⁰Th in this ocean-margin area could thus originate from the open Atlantic. As has been noted at MAB [27], the well-defined linear correlations between ²³⁰Th_{ex} in sediment-trap/core material and water depth, and the lack of similar increases in the fluxes of ²¹⁰Pb and ²³¹Pa argue against sediment focusing as a mechanism for the high local ²³⁰Th_{ex} inventories. The low ²⁶Al/ ²³⁰Th_{ex} ratio in CH88-11P (Fig. 5c) also speaks against sediment focusing. As the production ratio of ²⁶Al/²³⁰Th_{ex} increases with decreasing water depth, focusing of sediments locally or from shallow depths should not lower ²⁶Al/²³⁰Th_{ex}. A comparison of ¹⁰Be/²³⁰Th_{ex} between the BOR and MAB sediments further suggests that sediment focusing cannot be the cause for the high ²³⁰Th_{ex} flux-to-production ratios at BOR. Were it the cause, one would expect similar 10 Be/ ²³⁰Th_{ex} ratios in both BOR and MAB sediments, considering that a major source of the BOR sediments comes from the continental slope at MAB via WBUC [9]. However, 10 Be/ 230 Th_{ex} in MAB sediments at $\sim 400-3000$ m water depths centers around (9 ± 2) × 10⁸ atoms/dpm [27] which is ~ 5 times the Holocene ratio and 20 times the LGM ratio in BOR sediments (Fig. 5b). Sediments on their transit from MAB via WBUC must have their sorbed isotopes re-equilibrated with those in the water. In this way, depositional fluxes of 10 Be and 230 Th depend on their concentrations and residence times in BOR deep water. The low BOR 10 Be/ 230 Th_{ex} ratios chiefly reflect increased 230 Th_{ex} fluxes resulting from the short residence time [23] and increased concentration [41] of 230 Th in BOR deep water.

What causes the preferential scavenging of ²³⁰Th over ¹⁰Be, and what drives the boundary scavenging of ²³⁰Th in general? As has been discussed in the case of preferential scavenging of ²³⁰Th over ²³¹Pa [38], we believe that clay particles play an important role.

Table 2 shows that ¹⁰Be/²³⁰Th is much higher in deep water than in seafloor sediments at three locations. In the clay-rich BOR and the carbonate-rich equatorial Pacific, $F_{\text{Th/Be}} \approx 10$ – a manifestation to preferential scavenging of ²³⁰Th and to the fact that clays, not carbonates, are the major carrier for both ¹⁰Be and ²³⁰Th [38,46,47]. The Antarctic opal-rich sediments show $F_{\text{Th/Be}} \approx 2$, apparently resulting from a smaller ²³⁰Th-¹⁰Be fractionation by opaline particles. The large difference in $F_{\text{Th/Be}}$ between the equatorial Pacific and the Antarctic implies that the higher 10 Be/ ²³⁰Th_{ex} ratios in Antarctic sediments (Table 2) may not necessarily reflect a higher productivity in the Antarctic than in the equatorial Pacific; it reflects rather the low-clay, high-opal lithology of

Antarctic sediments. By the same token, that ²³⁰Th scavenging in the Weddell Sea (where the terrigenous flux is low) can be as low as one third of its water-column production [43], in sharp contrast to that at BOR, points further to the association of ²³⁰Th scavenging with the flux of clays.

It could be argued that a weakened ocean circulation during the LGM might have decreased the scavenging of ²³⁰Th at BOR. But this decrease would have been overridden by the effect of an increased terrigenous clay flux. In contrast to a ten-fold Holocene-to-LGM increase in clay flux (Fig. 3), the ²³⁰Th_{ex} flux at BOR increased by ~ 3 times from ~ 17 dpm/cm²/kyr to ~ 56 dpm/cm²/kyr. If the distribution coefficient (K_d) of ²³⁰Th between clays and seawater remained unchanged at the site, the combined effect of a decreased water mixing rate and an increased clay flux would have reduced the deep-water ²³⁰Th concentrations at BOR by a factor of ≥ 3 . Without the weakening of ocean circulation, the increased clay flux might have caused even greater boundary scavenging of ²³⁰Th at BOR.

The above analysis provides a cautionary note on the use of ¹⁰Be/²³⁰Th_{ex} as a proxy for paleoparticle flux [32]. It also echoes recent concerns [43,44] in regard to possible over- or underestimation of particle rain rates by the ²³⁰Th-normalized method.

3.6. Past changes in ocean productivity and water circulation at BOR

A two-box model, consisting of a BOR box (area $A_B = \sim 700 \times 700 \text{ km}^2$ and water depth $z_B = 3000 \text{ m}$ [9]) and an open-ocean box, is set

Table 2 Estimates of fractionation factors^a between 230 Th and 10 Be ($F_{Th/Be}$) for different sediment types

Location	Sediment type	(10Be/230Th) _w	$(^{10}\text{Be}/^{230}\text{Th}_{\text{ex}})^{\text{b}}_{\text{s}}$	$F_{\mathrm{Th/Be}}$
BOR	clay	$17 \pm 3 \ (n = 17)$	$1.7 \pm 0.1 \ (n=1)$	10 ± 2
S. Atlantic (>50°S)	opaline ooze	$12 \pm 3 \ (n = 12)$	$6 \pm 2 \ (n = 4)$	2.0 ± 0.8
Eq. Pacific	calcareous ooze	$12 \pm 2 \ (n = 22)$	$1.1 \pm 0.3 \ (n = 12)$	11 ± 3

 $^{^{}a}F_{\text{Th/Be}} = (^{10}\text{Be/}^{230}\text{Th})_{\text{w}}/(^{10}\text{Be/}^{230}\text{Th}_{\text{ex}})_{\text{s}}$ where subscripts w and s denote water (>3000 m) and surface sediments, respectively. $F_{\text{Th/Be}} > 1$ indicates preferential scavenging of ^{230}Th over ^{10}Be by sediment particles.

^bThe ratios (in 10^8 atoms/dpm) were based on data reported in [16,45] for ¹⁰Be and [40–42] for ²³⁰Th in deep water, and ([14,31,32], this work) for ¹⁰Be/²³⁰Th_{ex} in sediments. Shown in parentheses is the number (*n*) of measurements. $F_{\text{Th/Be}}$ for other high-particle flux ocean margins were not estimated because of the very limited data base on ¹⁰Be/²³⁰Th_{ex} in deep waters.

up for the mass balance of dissolved Be and Al isotopes at BOR. The model assumes water entering BOR from the North Atlantic; it does not specify where the water leaves though it may exit mainly to the south via WBUC. Let $k_{\rm w}$ (yr⁻¹) be the BOR water replacement rate constant, mass balance of authigenic ¹⁰Be and ⁹Be in the BOR box requires:

$$P_{\text{Be}10}/z_{\text{B}} + C_{\text{Be}10}^{\text{O}} \times k_{\text{w}} = C_{\text{Be}10}^{\text{B}} \times k_{\text{Be}} + C_{\text{Be}10}^{\text{B}} \times k_{\text{w}}$$
(4)

and

$$f_{\text{Be9}} \times a_{\text{Be}} \times F_{\text{p}}/z_{\text{B}} + C_{\text{Be9}}^{\text{O}} \times k_{\text{w}} =$$

$$C_{\text{Be9}}^{\text{B}} \times k_{\text{Be}} + C_{\text{Be9}}^{\text{B}} \times k_{\text{w}} \tag{5}$$

where P_{Be10} is ^{10}Be production rate (atoms/cm²/yr), F_{p} is deposition rate (g/cm²/yr) of terrigenous particles with ^{9}Be concentration a_{Be} (atoms/g), of which a fraction f_{Be9} is soluble, k_{Be} is scavenging rate constant (yr $^{-1}$) of Be, and C is concentration (atoms/cm³) in seawater (superscripts O and B denoting the open-ocean and BOR boxes, respectively).

Assuming the deposition rate of 26 Al to equal its production rate, P_{Al26} , we estimate the deposition rate of 10 Be (F_{Be10}) from (10 Be/ 26 Al)_a in BOR sediments:

$$F_{\text{Be}10} = C_{\text{Be}10}^{\text{B}} \times k_{\text{Be}} \times z_{\text{B}} = P_{\text{Al}26} \times \left(\frac{^{10}\text{Be}}{^{26}\text{Al}}\right)_{a}$$
 (6)

From Eqs. 4–6, $k_{\rm w}$ and $F_{\rm p}$ are solved as:

$$k_{\rm w} = \frac{\left[\left(\frac{^{10}\text{Be}}{^{26}\text{Al}} \right)_{\rm a} \times P_{\rm Al26} - P_{\rm Be10} \right]}{\left(C_{\rm Be10}^{\rm O} - C_{\rm Be10}^{\rm B} \right) \times z_{\rm B}}$$
(7)

and

$$F_{p} = \left[\frac{(P_{\text{Be}10} + k_{\text{w}} C_{\text{Be}10}^{\text{O}} z_{\text{B}})}{\binom{10 \text{Be}}{9 \text{Be}}} - k_{\text{w}} C_{\text{Be}9}^{\text{O}} z_{\text{B}} \right] \left(\frac{1}{f_{\text{Be}9} a_{\text{Be}}} \right)$$
(8)

In Eqs. 6–8, subscript a denotes authigenic. Measurable quantities include (10 Be/ 26 AI)_a, (10 Be/ 9 Be)_a, and f_{Be9} . Assignable quantities include $P_{\text{Be10}} = 1.2 \times 10^6$ atoms/cm²/yr [22], $P_{\text{Al26}}/P_{\text{Be10}} = 3.8 \times 10^{-3}$ [21], and $a_{\text{Be}} = 2.8$ ppm [18]. $C_{\text{Be10}}^{\text{B}}$ can be estimated from (10 Be/ 9 Be)_a by assuming $C_{\text{Be9}}^{\text{B}} = 25 \pm 5$ pM [16]. We assume $C_{\text{Be10}}^{\text{O}} = 800 \pm 100$ atoms/g and $C_{\text{Be9}}^{\text{O}} = 25 \pm 5$ pM based on modern ocean measurements [16].

Table 1 lists the modeled $k_{\rm w}$ and $F_{\rm p}$, with uncertainties estimated from the analytical errors of $^{26}{\rm Al}$ and $^{10}{\rm Be}$. A $\pm 20\%$ uncertainty of $^{10}{\rm Be}$ production rate [22] would raise the quoted errors by 10–40%. Results show a Holocene water replacement time (= $1/k_{\rm w}$) of about 23 yr at BOR. While in line with a generally sluggish deep-water circulation in the North Atlantic during the last glaciation [48], our results show quantitatively that the deep-water circulation at BOR was about 5 times slower during the LGM than during the Holocene.

The modeled terrestrial flux (F_p) to BOR increases from 3.7 mg/cm²/yr in the Holocene to > 29 mg/cm²/yr in the LGM (Table 1), consistent with the observed flux (Fig. 3). To retrieve information on past changes in ocean productivity, we first link the total particle (lithogenic+biogenic) flux (F_p^*) to the water-column residence time of 10 Be (τ_{Be}) via the following relationship and then evaluate the productivity from $(F_p^*-F_p)$:

$$F_{\rm p}^* = \frac{F_{\rm Be10}}{C_{\rm Be10,p}} = \frac{z_{\rm B}}{K_{\rm d,Be10}\tau_{\rm Be}} \tag{9}$$

where $F_{\rm p}^*$ is the flux (g/cm²/yr) of all sinking particles having an overall 10 Be concentration (atoms/g) of $C_{\rm Be10,p}$, and $K_{\rm d,Be10}$ (= $C_{\rm Be10,p}/C_{\rm Be10}$) is distribution coefficient (cm³/g) of 10 Be between particles and seawater. $K_{\rm d,Be10}$ (see Fig. 6) increases from $\sim 2\times 10^5$ in surface waters to $\sim 5\times 10^5$ in deep waters, due probably to the remineralization of biogenic particles. At BOR, $K_{\rm d,Be10}$ has a value of $\sim 4\times 10^5$. Re-arranging Eq. 6,

$$\tau_{\text{Be}} = \frac{1}{k_{\text{Be}}} = \frac{C_{\text{Be}10}^{\text{B}} \times z_{\text{B}}}{P_{\text{Al}26} \times \left(\frac{^{10}\text{Be}}{^{26}\text{Al}}\right)_{\text{a}}}$$
(10)

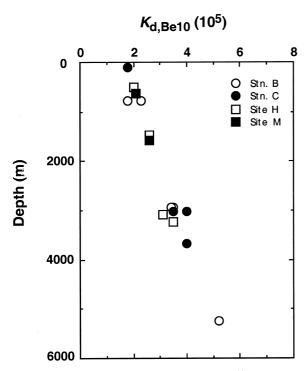


Fig. 6. Variation of distribution coefficients of 10 Be ($K_{\rm d,Be10}$) with water depth. $K_{\rm d,Be10}$ is estimated from data on sediment-trap material (averaged over different seasons to remove the seasonal influence on particulate compositions) and ambient seawater. Data source: [45,46], and our unpublished results.

we calculated τ_{Be} and F_{p}^* from Eqs. 9 and 10 for different time periods and showed (Table 1) that τ_{Be} has a range of 5–35 yr, which is very close to that of ^{26}Al , an order smaller than that in the open Atlantic [16].

Table 1 shows that the total particle flux (F_p^*) varies from 20–138 mg/cm²/yr, of which lithogenic flux (F_p) constitutes ~10% during the Holocene but ~30% during the LGM. The increase of lithogenic flux is consistent with the high LGM continental input discussed earlier. Our model results are further validated by the agreement between the modeled Holocene flux of 40 ± 14 mg/cm²/yr (Table 1) and the sediment-trap measurements of 66 ± 33 mg/cm²/yr and 20 ± 15 mg/cm²/yr respectively from water depth of 2397 m and 3170 m at an adjacent station (35°N, 74°W) [27]. Our F_p^* for the LGM could be an upper-limit estimate, as the clay-rich LGM sediments may lead to a higher $K_{\rm d.Be10}$ [46].

The net biogenic particle flux (or export productivity, $F_p^*-F_p$) has remained little changed except during the deglaciation when a much higher productivity occurred (Table 1). This is supported by the carbonate flux signals in CH88-11P (Fig. 3), although the signals are uncorrected for dissolution. Deglaciation caused the sea to rise about 130 m in a relatively short period [49] and it could have flooded much of the continental shelf. It could also have enhanced river runoff and local vertical mixing. Fresh water input may further induce buoyancy-forced onshore movement of deep water thus enhancing upwelling at ocean margins [50]. Whether these and other factors might have spurred the regional productivity remains speculative.

4. Summary

This study explores several important applications of ²⁶Al, ¹⁰Be and U-Th isotopes on past changes in continental input, ocean productivity and water mixing in an ocean margin. ²⁶Al was measured for the first time in such a depositional setting of high ²⁷Al flux. Results show a marked decrease in both ²⁶Al/²⁷Al and ¹⁰Be/⁹Be in BOR deep water during LGM, reflecting a greatly enhanced delivery of terrigenous material to the site. This enhancement caused changes in the relative intensity of radionuclide scavenging at BOR. The boundary scavenging during the Holocene follows the order $^{10}\text{Be} \ge ^{230}\text{Th} > ^{26}\text{Al}$ whereas during LGM, the order became 230 Th $> ^{10}$ Be $> ^{26}$ Al. Both sequences, however, are at variance with the order $^{10}\text{Be} > ^{26}\text{Al} \approx ^{230}\text{Th}$ as anticipated from the relative particle reactivities of the three species. Arguments are presented to show that dissolved ²³⁰Th and ¹⁰Be are subject to considerable lateral transport in areas of high particle input such as ocean margins, that changes in clay influx to such areas may affect the scavenging of ²³⁰Th, and that ratio ¹⁰Be/²⁶Al is a more promising proxy than ratio ¹⁰Be/²⁶Al for paleoceanographic reconstructions.

At BOR, ocean productivity have remained little changed over the last 100 kyr except during the last deglaciation when it significantly increased. Furthermore, the water replacement rate increased five-fold from LGM to the Holocene.

Acknowledgements

We thank T.C. Johnson of Duke University for letting us sample core CH88-11P. Comments made by EPSL reviewers and editor greatly helped improve our presentation. This work was supported by the NSF Chemical Oceanography Program under grant OCE-9633469. [EB]

References

- [1] T.L. Ku, L. Wang, S. Luo, J.R. Southon, ²⁶Al in sea water and ²⁶Al/¹⁰Be as paleo-flux tracer, Geophys. Res. Lett. 22 (1995) 2163–2166.
- [2] L. Wang, T.L. Ku, S. Luo, J.R. Southon, M. Kusakabe, ²⁶Al-¹⁰Be systematics in deep-sea sediments, Geochim. Cosmochim. Acta 60 (1996) 109–119.
- [3] D. Lal, B. Peters, Cosmic-ray produced radioactivity on the Earth, in: Handbuch der Physik 46/2, Springer, Berlin, 1967, pp. 551–612.
- [4] J.L. Reyss, Y. Yokoyama, F. Guichard, Production cross sections of ²⁶Al, ²²Na, ⁷Be from argon and of ⁷Be, ¹⁰Be from nitrogen: Implications for production rates of ²⁶Al and ¹⁰Be in the atmosphere, Earth Planet. Sci. Lett. 53 (1981) 203–210.
- [5] R. Middleton, J. Klein, ²⁶Al: measurement and applications, Philos. Trans. R. Soc. Lond. A 323 (1987) 121–143.
- [6] D. Bourles, G.M. Raisbeck, F. Yiou, M. Loiseaux, M. Lieuvin, J. Klein, R. Middleton, Investigation of the possible association of ¹⁰Be and ²⁶Al with biogenic matter in the marine environments, Nucl. Instrum. Methods Phys. Res. B 5 (1984) 365–370.
- [7] P. Sharma, J. Klein, R. Middleton, T.M. Church, ²⁶Al and ¹⁰Be in authigenic marine minerals, Nucl. Instrum. Methods Phys. Res. B 29 (1987) 335–340.
- [8] P. Sharma, T.M. Church, M. Bernat, Use of cosmogenic ¹⁰Be and ²⁶Al in philistine for the dating of marine sediments in the south Pacific ocean, Chem. Geol. 73 (1989) 279–288.
- [9] B.J. Haskell, T.C. Johnson, W.J. Showers, Fluctuations in deep western north Atlantic circulation on the Blake Outer Ridge during the last deglaciation, Paleoceanography 6 (1991) 21–31.
- [10] M. Schwartz, S.P. Lund, T.C. Johnson, Environmental factors as complicating influences in the recovery of the quantitative geomagnetic-field paleointensity estimates from sediments, Geophys. Res. Lett. 23 (1996) 2693–2996.
- [11] L.D. Keigwin, G.A. Jones, Glacial-Holocene stratigraphy, chronology, and paleoceanographic observations on some

- North Atlantic sediment drifts, Deep-Sea Res. 36 (1989) 845–867
- [12] L.D. Keigwin, G.A. Jones, Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate, J. Geophys. Res. 99 (1994) 12397–12410.
- [13] J.R. Southon, J.S. Vogel, I. Nowikow, D.E. Nelson, R.G. Korteling, T.L. Ku, M. Kusakabe, C.A. Huh, The measurement of ¹⁰Be concentrations with a tandem accelerator, Nucl. Instrum. Methods Phys. Res. 205 (1982) 251–257.
- [14] L. Wang, ²⁶Al-¹⁰Be Systematics in the Ocean, Ph.D. Thesis, University of Southern California, Los Angeles, CA, 1997, 261 pp.
- [15] D. Bourles, G.M. Raisbeck, F. Yiou, ¹⁰Be and ⁹Be in marine sediments and their potential for dating, Geochim. Cosmochim. Acta 53 (1989) 443–452.
- [16] T.L. Ku, M. Kusakabe, C.I. Measures, J.R. Southon, G.L. Cusimano, J.S. Vogel, D.E. Nelson, S. Nakaya, Beryllium isotope distribution in the western North Atlantic: a comparison to the Pacific, Deep-Sea Res. 37 (1990) 795– 808.
- [17] L. Brown, I.S. Sacks, F. Tera, J. Klein, R. Middleton, Beryllium-10 in continental sediments, Earth Planet. Sci. Lett. 55 (1981) 370–376.
- [18] S.R. Taylor, Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Acta 28 (1964) 1273–1286.
- [19] C.I. Measures, J.M. Edmond, T.D. Jickell, Aluminum in the northwest Atlantic, Geochim. Cosmochim. Acta 50 (1986) 1423–1429.
- [20] K.J. Orians, K.W. Bruland, The biogeochemistry of aluminum in the Pacific Ocean, Earth Planet. Sci. Lett. 78 (1986) 397–410.
- [21] G.M. Raisbeck, F. Yiou, J. Klein, R. Middleton, Accelerator mass spectrometry measurement of cosmogenic ²⁶Al in terrestrial and extraterrestrial matter, Nature 301 (1983) 690–692.
- [22] M.C. Monaghan, S. Krishnaswami, K.K. Turekian, The global-average production rate of ¹⁰Be, Earth Planet. Sci. Lett. 76 (1985/86) 279–287.
- [23] E. Yu, Variations in the Particulate Flux of ²³⁰Th and ²³¹Pa and Paleoceanographic Applications of the ²³¹Pa/ ²³⁰Th ratio, Ph.D. Thesis, Woods Hole Oceanographic Institution/Massachusetts Institute of Technology, 1994, 269 pp.
- [24] T.H. Peng, T.L. Ku, J. Southon, C. Measures, W.S. Broecker, Factors controlling the distribution of ¹⁰Be and ⁹Be in the ocean, in: K. Gopalan (Ed.), From Mantle to Meteorites, Acad. Sci., Bangalore, 1990, pp. 201–204.
- [25] R.W. Murray, M. Leinen, Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean, Geochim. Cosmochim. Acta 60 (1996) 3869–3878.
- [26] R.F. Anderson, Y. Lao, W.S. Broecker, S.E. Trumbore, H.J. Hofmann, W. Wolfli, Boundary scavenging in the Pacific Ocean: a comparison of ¹⁰Be and ²³¹Pa, Earth Planet. Sci. Lett. 96 (1990) 287–304.

- [27] R.F. Anderson, M.Q. Fleisher, P.E. Biscaye, N. Kumar, B. Dittrich, P. Kubik, M. Suter, Anomalous boundary scavenging in the Middle Atlantic Bight: evidence from ²³⁰Th, ²³¹Pa, ¹⁰Be and ²¹⁰Pb, Deep-Sea Res. 41 (1994) 537–561.
- [28] Y. Lao, R.F. Anderson, W.S. Broecker, S.E. Trumbore, H.J. Hofmann, W. Wolfli, Transport and burial rates of ¹⁰Be and ²³¹Pa in the Pacific Ocean during the Holocene period, Earth Planet. Sci. Lett. 113 (1992) 173–189.
- [29] Y. Lao, R.F. Anderson, W.S. Broecker, S.E. Trumbore, H.J. Hofmann, W. Wolfli, Increased production of cosmogenic ¹⁰Be during the last glacial maximum, Nature 357 (1992) 576–578.
- [30] M. Frank, J. Eckhardt, A. Eisenhauer, P.W. Kubik, B. Dittrich-Hannen, M. Segl, A. Mangini, Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: Implications of hydrothermal activity and paleoproductivity changes during the last 100,000 years, Paleoceanography 9 (1994) 559–578.
- [31] M. Frank, A. Eisenhauer, W.J. Bonn, P. Walter, H. Grobe, P.W. Kubik, B. Dittrich-Hannen, A. Mangini, Sediment distribution versus paleoproductivity change: Weddell Sea margin sediment stratigraphy for the last 250,000 years deduced from ²³⁰Thex, ¹⁰Be and biogenic barium profiles, Earth Planet. Sci. Lett. 136 (1995) 559–573.
- [32] N. Kumar, R.F. Anderson, R.A. Mortlock, P.N. Froelich, P. Kubik, B. Dittrich-Hannen, M. Suter, Increased biological productivity and export production in the glacial Southern Ocean, Nature 378 (1996) 675–680.
- [33] K.K. Turekian, K.H. Wedepohl, Distribution of the elements in some major units of the Earth's crust, Geol. Soc. Am. Bull. 72 (1961) 175–192.
- [34] T.L. Ku, Uranium Series Disequilibrium in Deep-Sea Sediments, Ph.D. Thesis, Columbia University, New York, 1966.
- [35] M.P. Bacon, J.N. Rosholt, Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise, Geochim. Cosmochim. Acta 46 (1982) 651–666.
- [36] R. Francois, M.P. Bacon, Variations in terrigenous input into the deep Equatorial Atlantic during the past 24,000 years, Science 251 (1991) 1473–1476.
- [37] M. Frank, B. Schwarz, S. Baumann, P.W. Kubik, M. Suter, A. Mangini, A 200 kyr record of cosmogenic radio-nuclide production rate and geomagnetic field intensity from ¹⁰Be in globally-stacked deep-sea sediments, Earth Planet. Sci. Lett. 149 (1997) 121–129.

- [38] S. Luo, T.L. Ku, Oceanic ²³¹Pa/²³⁰Th ratio influenced by particle composition and remineralization, Earth Planet. Sci. Lett. 167 (1999) 183–195.
- [39] S. Vogler, J. Scholten, M. Rutgers van der Loeff, A. Mangini, ²³⁰Th in the eastern North Atlantic: the importance of water mass ventilation in the balance of ²³⁰Th, Earth Planet. Sci. Lett. 156 (1998) 61–74.
- [40] M.M. Rutgers van der Loeff, G.W. Berger, Scavenging of ²³⁰Th and ²³¹Pa near the Antarctic Polar Front in the South Atlantic, Deep-Sea Res. 40 (1993) 339–357.
- [41] S.B. Moran, M.A. Charette, J.A. Hoff, R.L. Edwards, W.M. Landing, Distribution of ²³⁰Th in the Labrador Sea and its relation to ventilation, Earth Planet. Sci. Lett. 150 (1997) 151–160.
- [42] Y. Nozaki, T. Nakanishi, ²³¹Pa and ²³⁰Th profiles in the open ocean water column, Deep-Sea Res. 32 (1985) 1209– 1220.
- [43] H.J. Walter, M.M. Rutger van der Loeff, H. Holtzen, U. Bathmann, Reduced scavenging of ²³⁰Th in the Weddell Sea: implications for paleoceanographic reconstructions in the South Atlantic, Deep-Sea Res. 47 (2000) 1369–1387.
- [44] G.M. Henderson, C. Heinze, R.F. Anderson, A.M.E. Winguth, Global distribution of the ²³⁰Th flux to ocean sediments constrained by GCM modeling, Deep-Sea Res. 46 (1999) 1861–1893.
- [45] M. Kusakabe, T.L. Ku, J.R. Southon, J.S. Vogel, D.E. Nelson, C.I. Measures, Y. Nozaki, Distribution of ¹⁰Be and ⁹Be in the Pacific Ocean, Earth Planet. Sci. Lett. 82 (1987) 231–240.
- [46] P. Sharma, R. Mahannah, W.S. Moore, T.L. Ku, J.R. Southon, Transport of ¹⁰Be and ⁹Be in the ocean, Earth Planet. Sci. Lett. 86 (1987) 69–76.
- [47] J.R. Southon, T.L. Ku, D.E. Nelson, J.L. Reyss, J.C. Duplessy, J.S. Vogel, ¹⁰Be in a deep-sea core: Implications regarding ¹⁰Be production changes over the past 420 ka, Earth Planet. Sci. Lett. 85 (1987) 356–364.
- [48] E.A. Boyle, L.D. Keigwin, Deep circulation of the North Atlantic over the last 200,000 years: geochemical evidence. Science 218 (1982) 784–787.
- [49] R.G. Fairbanks, 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature 342 (1989) 637–742.
- [50] C.T.A. Chen, The Three Gorges Dam: Reducing the upwelling and thus productivity in the East China Sea, Geophys. Res. Lett. 27 (2000) 381–383.