Top Physics at the LHC

Claudio Campagnari University of California Santa Barbara

Aspen Particle Physics Conference 19 January 2010

<u>Outline</u>

Why Top Physics

Top Physics: Tevatron vs. LHC

 Survey of expectations from Atlas and CMS, with emphasis on early (expected) results

Caveats

- As you heard yesterday, the LHC will start at 7
 TeV. Then ~ 10 TeV, then ~ 14 TeV
- Unless otherwise stated, everything in this talk is at 10 TeV
 - To zeroth order, no dramatic differences, except in the most obvious way (lower cm energy → lower xsection → need more luminosity)
- I am on CMS so you may find a slight CMS bias – which I tried to eliminate but I may not have fully succeeded

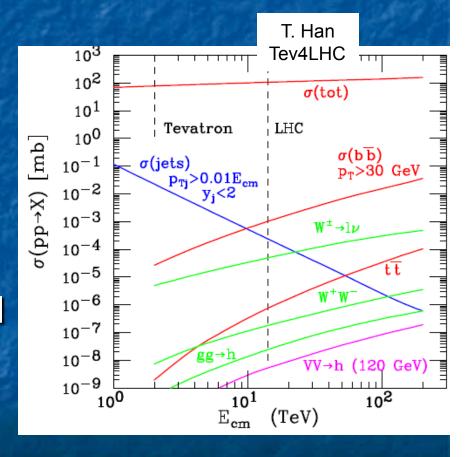
Why top physics?

Some reasons familiar from Tevatron program:

- Tests of a not-so-well explored area of SM
 - σ, couplings, rare decays, production properties....
- M_{top}: crucial parameter that enters into consistency tests of rad. corrections, M_{Higgs}

Some reasons that are a bit new:

- Very high expected event rates:
 - Possibility to use top events as detector calibration
 - Top-pair production is often main background to searches for new physics → need to understand well


Top-pair production: LHC vs TeV

 The most significant difference is that σ(ttbar) is much larger at the LHC than at Tevatron

(~ 450 pb vs. ~ 8 pb)

- The main backgrounds scale up in cross-section by about the same amount
 - Interesting aside on W BG, next page
- Thus any top pair physics that has been/can be/should be done at the Tevatron will be done at the LHC with similar techniques

But (eventually) with very very high statistics

Aside on W background

■ W+jets main background to ttbar→lepton+jets

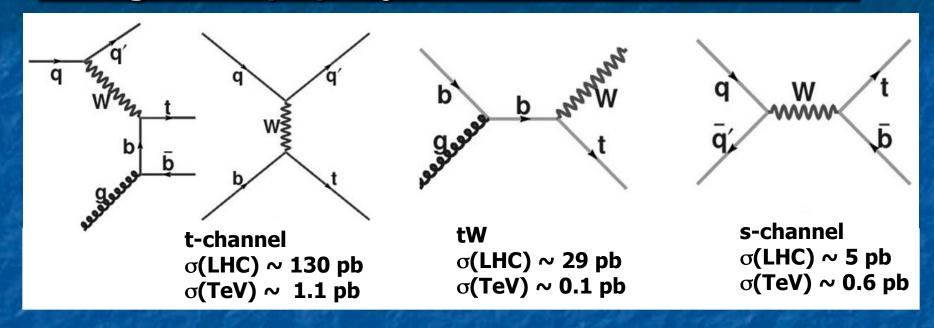
W+Multijet rates

σxB(W→eV)[pb]	N jet=I	N jet=2	N jet=3	N jet=4	N jet=5	N jet=6
LHC(14 TeV)	3400	1130	340	100	28	7
Tevatron	230	37	5.7	0.75	0.08	0.009

 $E_T(jets) > 20 \text{ GeV}, |\eta| < 2.5, \Delta R > 0.7$

From M. Mangano

3400/230=15

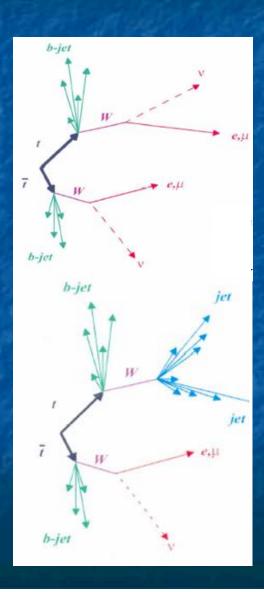

100/0.75=130

σ(W) increases by ~ x10, but σ(W+4 jets) increases by ~ x100 -- just like σ(ttbar)

Consequence of high o(ttbar)

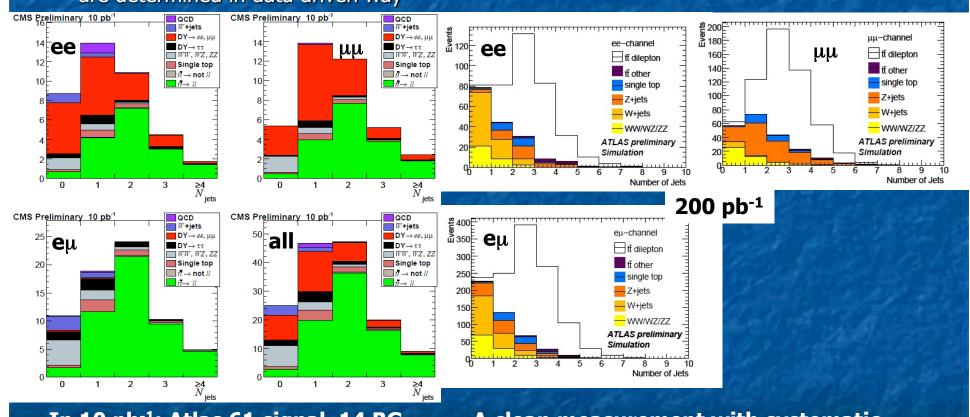
- Can use ttbar events as "calibration" of energy scale and b-tagging
- Tail of ttbar events is major background to searches for new physics in events with lepton(s), jets, missing energy
 - σ(ttbar) ~ 450 pb
 - σ(SUSY)~ few pb (beyond Tevatron limits)
- Understanding ttbar tails, or even better, developing methods to estimate them with minimum (no?) theoretical (ie: Monte Carlo) input is a major theme at the LHC
 - Very interesting.....but I wont say anything about that
 - Beyond the scope of this talk

Single top physics: LHC vs TeV


- High cross-section and good signal-to-noise wrt to W BG → t-channel signal can be extracted quite easily at the LHC
- Contrast with sophisticated multivariate analyses with poor signal-to-noise that are absolutely needed at the Tevatron

- Will now turn to a survey of Atlas/CMS analyses of MC data in preparation for the upcoming run
- Will emphasize the "early" analyses, with limited integrated luminosity
- Will not dwell on details. Rather try give a flavor for how these analyses will be done, and point out aspects that I find interesting
- Details of these analyses (and many more) are publicly available on the web:
 - http://cms.cern.ch/iCMS/ → Physics → Recent Physics Results → Top
 - https://twiki.cern.ch/twiki/bin/view/Atlas/TopPublicResults

ttbar cross-section measurements


- Interesting per-se, but also very 1st step
 - Prove that can perform complex multiobject analyses
- Dilepton
 - ttbar \rightarrow (I v b) (I v bbar)
 - BR ~ 4/81
 - Opposite sign isolated leptons (e or μ),
 ≥ 2 jets, missing transverse energy (MET)
- Lepton + jets
 - ttbar \rightarrow (I \vee b) (q qbar bbar)
 - BR ~ 12/81
 - Isolated lepton (e or μ), ≥ 4 jets, MET

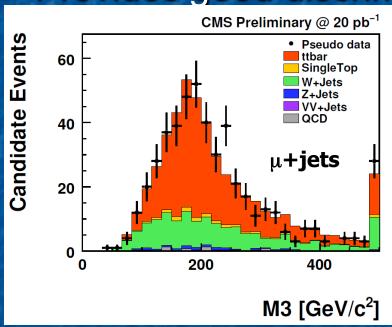
No b-tagging, at least initially

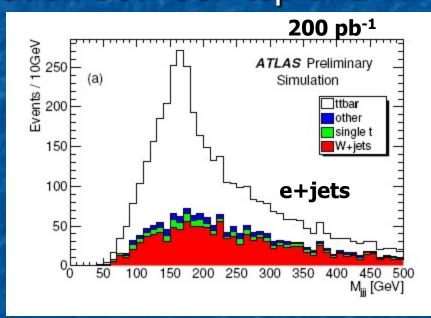
Dilepton cross-sections

- Count events with two or more jets, subtract BG.
- BG for which MC cannot be trusted (fake leptons and Drell-Yan with fake MET)
 are determined in data driven way

In 10 pb⁻¹: Atlas 61 signal, 14 BG CMS 60 signal, 16 BG

A clean measurement with systematic uncertainties of order 10% (excluding luminosity) for both experiments


Lepton + jets cross-section


- The selection of I+4jets+MET is expected to give a sample which is roughy 2/3 ttbar and 1/3 W+jets (+ a few other smaller BGs)
- The W+jets BG must be estimated and subtracted
- Two methods used
 - Atlas only: "cut-and-count" where N(W+jets) = c * N(Z+jets)
 and c is measured in the low multiplicity bins and includes a
 (small) Monte Carlo correction
 - The uncertainty on N(W+jets) is then about 20% in 200 pb⁻¹.
 - Both CMS and Atlas: use kinematics to separate ttbar from W+jets.
 - There are many possibilities: single variable fits all the way to multivariates
 - Here I will only show single variables
 - Eventually, of course: b-tagging

The M3/M_{iii} variable (1)

Invariant mass of the 3 jets that have the highest vector-sum P_⊤.

Provides good discrimination between top and W+jets

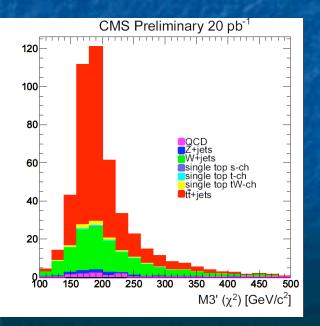
- Signal can then be extracted from templated fits
 - Both e+jets and μ+jets are used

The M3/M_{jjj} variable (2)

Expected event yields are remarkably similar in the two experiments.....

	Events/pb ⁻¹ (CMS)	Events/pb ⁻¹ (Atlas)
μ+jets	16	16
e+jets	11	13

Statistical uncertainties:

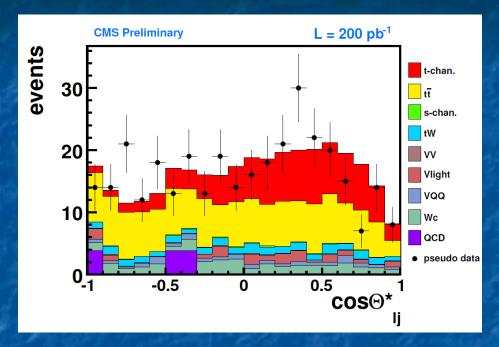

	Stat error in <u>20</u> pb ⁻¹ (CMS)	Stat error in <u>200</u> pb ⁻¹ (Atlas)
μ+jets	16%	15%
e+jets	23%	14%

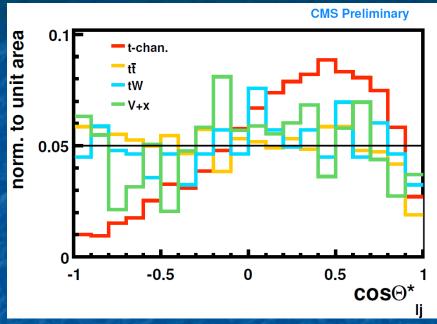
(the apparent difference in statistical power comes from the fact that here CMS takes the shapes of ttbar and BG from MC, while Atlas fits to Gaussian + 6th order Chebychev polynomial, with fully floating parameters)

 Systematics are dominated by jet energy scale (order 15% for 10% jet energy scale uncertainty)

A comment about M3/M_{jjj}

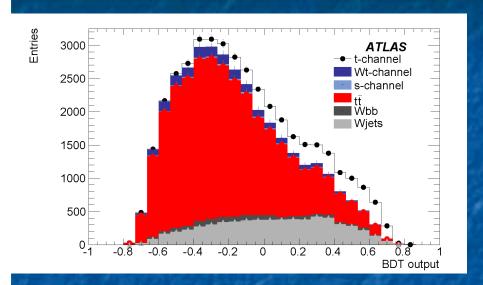
- The plot looks great. Mass peak! -- But it is a bit deceiving
- In CMS MC for only ~ 30% of the events are the 3 jets in the M3 reconstruction from the t→q qbar b decay
 - Even wrong combinations show a broad peak around M_{top}
- Refined selections can reduce the combinatorics:
 - Requiring that two jets are consistent with the W mass (Atlas)
 - Selecting 3 jets based on a mass-χ²-sorting technique (CMS)


- CMS example:
 - Get sharper peak, improvement in statistical power....
 - 16% \rightarrow 12% (μ +jets in 20 pb⁻¹)
 - at the price of worse systematics from jet energy scale
 - 15% → 19% (for 10% jet energy scale syst)

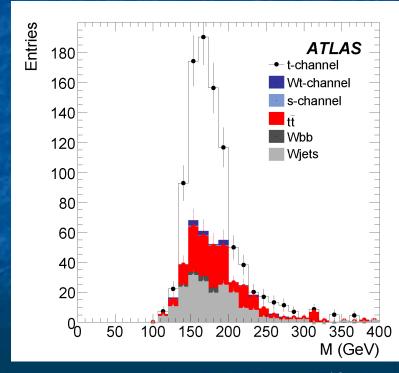

Conclusions about o(ttbar)

- Both experiments are well prepared to measure σ(ttbar) with as little as few tens of pb⁻¹.
- Several analysis strategies have been layed out and are well understood

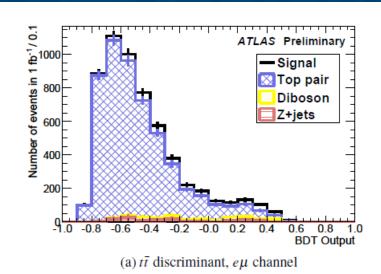
Single top cross-section

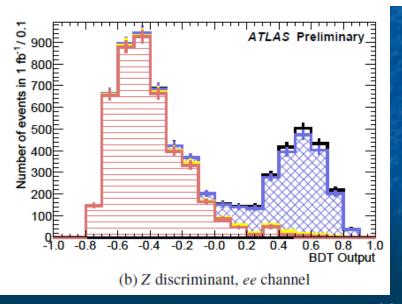

- Because of the high cross-section in the t-channel, this measurement is a lot easier at the LHC than at the Tevatron.
- CMS plans a 1st measurement of the t-channel based on a fit to a single variable
 - Due to V-A, events are distributed as ~ 1+ cosθ*_{ij}, where θ*_{ij} is the angle between the lepton and the light quark jet in the reconstructed top rest frame
 - All backgrounds are flat in cosθ*_{ij},
 - Then, since the simple event selection* already has a good signal-to-noise (~ ½), a simple 1D templated fit works

 \pm 35% stat \pm 15% syst in 200 pb⁻¹ (2.7 σ)


t-channel (Atlas) (14 TeV)

Atlas uses a multi-variate Very clear signal in 1 fb⁻¹


Expect cross-section measurement to \pm 5.7% (stat) \pm 22% (syst)


BDT variable. Cut at 0.6, plot the mass

tW channel (Atlas)

- Select events with opposite sign dileptons + MET + 1 jet
- In 1 fb⁻¹ get 220 signal events and 974 Bg events (mostly ttbar and Drell Yan)
- A straight BG subtraction then gives a σ(tW) uncertainty of 50%
- To improve on that, use boosted decision tree. Expect 34% σ(tW) uncertainty

$R = BR(t \rightarrow Wb) / BR(t \rightarrow Wq) (CMS)$

- Take the dilepton eμ + 2 jets sample which is a very clean ttbar sample (see pg 11)
- Knowing the btag efficiency, from the number of btag jets can extract R
- Alternatively: assume R=1 (SM value) and measure the btag efficiency (ie: use as calibration)

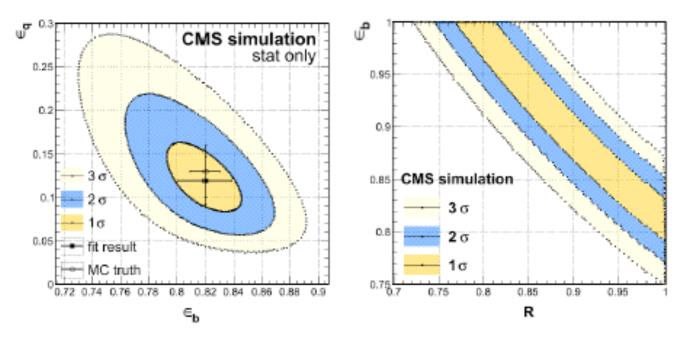
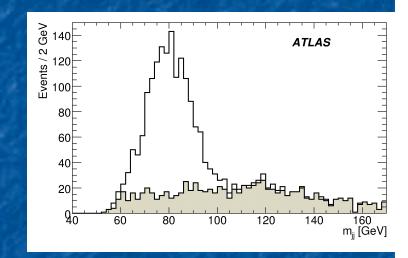
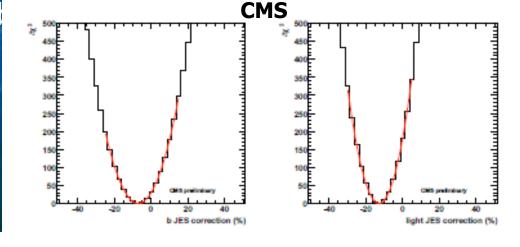


Figure 5: (Left) Jet Probability algorithm with the loose working point is used to fit both btagging (ε_b) and mistagging (ε_q) efficiencies, assuming R=1. The contour plot for the simultaneous fit is shown with MC truth superimposed. (Right) Contour plots (1σ , 2σ and 3σ) for the
likelihood obtained by floating R and ε_b .

In 250 pb⁻¹: gives R within 2% (stat) \pm 9% (syst ϵ_b) \pm 3% (other syst) OR taking R=1, gives ϵ_b within 2% (stat) \pm 4% (syst)

Jet energy scale (JES) (14 TeV) using ttbar→ lepton + 4 jet events


Atlas:


- Look at W-mass peak for events with 2 btags
- JES to $\pm 2\%$ with 50 pb⁻¹.

CMS:

- kinematical fits with top and W mass constraint with JES floating
- JES to ± 1% with 100 pl

NB: These are overall scale uncertainties For PT and η dependence, need more stat

Conclusions

Both Atlas and CMS have been preparing for a rich program of top physics

We are just waiting for data