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ML in High Energy Physics (HEP)
• In HEP we have used “ML” for 30+ years
• We want to measure the rate and properties 

of various physical processes, e.g.,
• How often does a proton-proton collision result in 

two top quarks?
• Are the properties of these two-quark events 

consistent with theoretical expectations?

• Or, we want to discover new processes, e.g.,
• The Higgs boson (!)
• Or some other crazy (but rare!) thing

• Classification problem: “Signal” vs. 
“Background”
• Recently: ML also for improving measurement 

precision.  In this talk, only classification.

A “detector”

Visualization of one “event”
40 MHz of these,
24/7, 8 months/year
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We are interested in rare processes

10 mHZ

10/year

Total event rate:
40 MHz
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Cartoon of an HEP event selection 

Nth variable

Nth+1 variable Phase space
of all events

Phase space
of signal events
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Old fashioned approach ”square cuts”

Nth variable

Nth+1 variable

These “events”
are selected for 
further analysis 
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Multivariate (ML) HEP event selection 

Nth variable

Nth+1 variable

These “events”
are selected for
further analysis

• Likelihood
• Fisher
• Boosted Decision Trees
• (Deep) Neural Nets
• ……
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An example from my HEP research.  
Full ML analysis

Less More
signal- ← Boosted Decision Tree Score → signal-
like                                                                   like

Signal 
extracted 
from fit

Eur. Phys. J. C80 (2020) no.2, 75
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http://inspirehep.net/search?p=find+eprint+1908.06463


Another example from my HEP work 
Partial ML analysis (more robust)

Less More
signal  ← Boosted Decision Tree Score → signal
like                                                                   like

Cut on BDT, then look
at most discriminating

variable

Phys. Rev. Lett. 125 (2020) 6, 061801
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http://inspirehep.net/search?p=find+eprint+2003.10866


Multivariate (ML) vs “square cuts”
Multivariate
• More efficient
• More information (more variables)
• Naturally: each selected event has a 

“weight”
• Signal-like vs Background-like

• More opaque 
• Garbage-in-garbage-out

Square Cuts
• Less efficient
• Not as much information
• Weight of each selected event
• Not automatic
• But more under control

• Less opaque

Bottom line: multivariate approaches ~ 10% to factor 2 better
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ML and Cardiology
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Marker-HF: a risk score for Heart Failure (HF) patients

• Boosted Decision Tree (AdaBoost)
• Based on Electronic Health Record (EHR) of UCSD Medicine 
• Challenging

• Precise definition of outcomes
• No imputation in algorithm design
• Small number of inputs (8)
• Ease of use
• Not enough patient statistics to do anything super-sophisticated  

• Strict temporal requirements on data collection
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Cartoon of samples definitions:
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Time (days)

N (Patients)

90 days

800 days

Background cohort
N = 966

Signal cohort
N=466

Lifetime distribution

Index Event

“signal”            – Dead: died less then 90 days after index event
“background” – Alive : alive more than 2 years after index event

Variables Used:
Diastolic blood pressure
Creatinine
Blood Urea Nitrogen
Hemoglobin
White blood cell count
Platelets
Albumin
Red Blood Cell Distribution Width
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No ”silver bullet”:
- No single great discriminating variable.
- Each shows some separation.

Red - Low risk cohort
Black - High risk cohort 

Key is the combination and correlations
between the whole set 
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MARKER-HF Training and Performance
A Boosted Decision Tree algorithm (Anaboost, 200 trees, maximum depth of 2) to derive a
model and relate variables to the known outcome using the training subset of the sample
only. Similar results obtained with NN. Even with Fisher Discriminant (!)
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AUC: 0.875 
(95% CI 0.85- 0.90)



The algorithm figures out automatically
what the “healthy” ranges of the 
covariates are.
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Mortality in Marker-HF strata
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External (outside UCSD) validation
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Demographics

18



Comparison with other Risk Scores/Markers 

N-terminal pro-hormone BNP                                Get-With-The-Guideline Score Inter Mountain Risk Score

AUC(NT-BNP) = 0.69                                          AUC(GTWG) = 0.73                                       AUC(IMRS) = 0.75 – 0.78                          

AUC(MARKER-HF) = 0.88 19



Why is Marker-HF “better”

• IMRS score: 15 variables vs. 8 for MARKER-HF

• IMRS: very simple algorithm

• No correlations!
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Now integrated on an “experimental” basis
in the UCSD and Northwestern hospital systems.

Helps to triage HF patients to advanced care

I entered some random numbers (!)
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ML: HEP vs. Cardiology
High Energy Physics
• Train with simulated data (mosty)
• High Statistics training sets.  Easily 

millions of events
• Can go “deep”
• Crisp definition of outcomes

• Signal vs Backgroud
• At what level can you really trust the 

simulation of backgrounds?
• The underlying physics processes
• The simulation of all the detector 

hydiosincracies
• Garbage-in-garbage-out

• Use control samples, be smart

Cardiology
• Train with real patient data
• Limited statistics (small N)
• Algorithms cannot be too complicated
• Continuos range of outcomes
• Getting reliable EHR data is painful

• Bureaucracy
• Poor data quality.  Needs a lot of attention

• A-posteriori clinical trials are not much 
better
• Censoring issues
• Biased samples, validation
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Since the publication of the MARKER-HF paper….
• With a group from Northwestern:

• Verified that MARKER-HF works on their patients
• Compared with two other more state-of-the-art scores

• Seattle Heart Failure Model (SFHM)
• Meta-Analysis Global Group in Chornic (MAGGIC) HF Score
• We couldn’t do that originally because these scores were too complicated to calculate

• Found that MARKER-HF works just as well, and it is much easier to deal with
• Paper has been submitted
• MARKER-HF now incorporated in Northwestern clinical practice

• With a group from Brigham and Women/Harvard:
• Verified that MARKER-HF works on Clinical Trials patients
• Studied the effect of using MARKER-HF as a tool to select patients to improve efficiency and 

lower cost of Clinical Trials
• Eur J Heart Fail. doi:10.1002/ejhf2155 (2022).

• With two Korean groups:
• Verified that MARKER-HF works on a Korean HF population
• Found that it also works for conditions beyond HF
• Paper in preparation 26

https://doi.org/10.1002/ejhf.2528


MARKER-HF vs 1-year mortality.
UCSD, Northwestern, Korean cohorts.
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HF = Heart Failure
CV = Cardiovascular Disease
AF = Atrial Fibrillation
HTN = Hypertension
DM  = Diabetes Mellitus
ACS = Acute Coronary Syndrome
CKD = Chronic Kidney Disease
COPD = Chronic obstructive pulmonary disease
MALIG = Malignancy

MARKER-HF vs 1-year mortality.
Korean patients, different diagnoses

Doesn’t work for cancer v. well
Not too surprising.
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Beyond Marker-HF
• Was supposed to be a “proof of principle”, took on a life of its own
• Our cardiology colleagues have several ideas for problems to pursue
• Getting our hands on good data sets has proven difficult
• Even though the cardiologists in our group are well positioned in their community
• PIs of large Clinical Trials

• Few irons in the fire.  Most interesting is the Sudden Cardiac Death project
• Briefly:
• Existing guidelines to install de-fribillators in people are not optimal
• Many patients that do not need it, get an implant.

• Invasive, not risk-free
• Some patients that could have been saved by the implant are excluded
• Can a ML algorithm help?  Looks promising.
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Concluding Remarks
• For ML in medicine, distinguish image analysis vs. simple “numbers-based” 

problems
• Layman impression: image tools are quite advanced (Google!)
• For the other type of problems, low hanging fruit?
• Newbies like Avi and I (with clinical advice from MDs) can develop algorithms at 

or beyond the state of the art
• The tools that we use are not particularly sophisticated.  Do not need super-

expert understanding
• We used software that has been around for 20+ years in HEP
• Equivalent or better toolkits are available elsewhere

• The challenge has not been the technology but rather
• Formulating interesting/important problems
• Getting ahold of decent data sets
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