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How did this start

ConversaZons	between	exp	high	energy	physicists	and	clinical	cardiologists:	

• A`empts	 to	predict	 heart	 failure	 (HF)	mortality	 using	 clinical	 variables	or	 risk	
scores	have	not	been	very	successful		

•  Fails	in	one	or	more	of	the	following	ways:	
•  limited	predicZve	power	(poor	AUC,	typically	<	0.7)	
•  loss	of	accuracy	when	applied	to	other	cohorts	or	populaZons		
• dependence	on	variables	that	are	subjecZve	or	not	readily	available	

	There	are	many	many	risk-scores	on	the	market	
to	the	point	that	“risk-score	fa<gue”	is	prevalent	
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Today’s buzzword…Machine Learning (ML)

• In	HEP	have	been	using	(simple)	ML	for	>	20	years	to	
categorize	“events”	or	“objects”	as	“signal”	vs.	“background”	

•  Event	=	final	state	of	decay	or	of	interacZon	
• Object	=	electrons,	photons,	bo`om	quarks,	etc	

• Can	our	experience	be	brought	to	bear?	
•  Signal/Background	à	Early	death/Long	term	Survival	
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Primary Objec0ve

Define	a	risk	score	aiming	to	avoid	common	pilalls	by:	
• Using	strict	data	collecZon	and	cleanup	methodology	that	ensures	
maintaining	the	correlaZons	that	define	the	physical	state	of	the	
system	(paZent)	within	a	relaZvely	limited	period	of	Zme	

• Having	precise	definiZons	of	outcomes.		
• Avoiding	imputaZon	by	requiring	all	covariates	used	in	the	
creaZon	of	the	model	to	be	present.	

•  LimiZng	the	number	of	inputs	to	a	small	number	of	widely	
available	covariates	that	are	checked	rouZnely	in	HF	paZents.	

• Capturing	the	mulZ-dimensional	correlaZons	between	the	
covariates	and	the	outcomes.	
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Methods and Study defini0on
• Retrospectively extracted de-identified EMR of patients in the UCSD 

health system with 1st recorded diagnosis of Heart Failure. 

• Used an iterative process to select a minimal, most common, and 
discriminating set of variables (only 8) 

• HEP software, TMVA in CERN Root package 

• For patient to be included in the analysis all variables needed to be 
present using data collected over a narrow time window (<7 days) 

• Excluded patients: over 80, with an ICD, with indication of Sepsis 
• Minimize dilution of outcomes 
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Sta0s0cs

Comments:	
	
•  Low	staZsZcs	compared	to	
typical	HEP	problem	

• Dirty	data,	big	loss	from	
missing	variables	

•  SystemaZcs?	

•  ExtracZng	data	from	the	EMR	
was	a	bit	of	an	“adventure”	

StarZng	sample	
N	=	14,589	

Remove:	tool	old,	with	arZficial	device,	
with	sepsis,	dies	within	7	days	

N	=	11,239	

Remove	bad	EMR	
N=10,588	

Remove	paZents	with		
missing	variables	

N=5,822	
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Cartoon of samples defini0on

Time	(days)	

N	(PaZents)	

90	days	

800	days	

Low	Risk	Cohort	
N	=	800	

High	Risk	cohort	
N=	407	 LifeZme	distribuZon	

Index	Event	

Variables	Used:	
	
Diastolic	blood	pressure 		
CreaZnine 	 		
Blood	Urea	Nitrogen 		
Hemoglobin 	 		
White	blood	cell	count 		
Platelets 		
Albumin 	 		
Red	Blood	Cell	DistribuZon	Width

		

7	



Input Variables
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Important:	No	”silver	bullet”:	
-  No	single	discriminaZng	variable.	
-  Each	shows	some	separaZon.	
-  But	poor	AUC,	individually.	

Red				-	Low	risk	cohort	
Black	-	High	risk	cohort		

Key	is	the	combinaZon	and	correlaZons	
between	the	whole	set		



MARKER-HF Training and Performance
A	Boosted	Decision	Tree	algorithm	was	used	(200	trees,	maximum	depth	of	2)	to	
derive	 a	 model	 and	 relate	 variables	 to	 the	 known	 outcome	 using	 the	 training	
subset	of	the	sample	only.	*Similar	results	obtained	with	ANN)	
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AUC: 0.875  
(95% CI 0.85- 0.90) 

TPR	=	True	PosiZve	Rate	
TNR	=	True	NegaZve	Rate	



Does it make sense clinically?

Does	a	high	score	corresponds	to	
abnormal	values	of	the	measured	inputs??	
	
-  Input	variables	plo`ed	against	the	mean	
score	

	
-	The	yellow	bands	represent	the	normal	
ranges.	
	
è	NOT	an	explicit	input	to	the	model.					
“Learned”	by	the	training	
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Comparisons with similar risk scores

IMRS:	American	Journal	of	Medicine,	
122(6)L550-558,	2009	
	
GWTG:	CirculaZon:	Cardiovascular	
Quality	and	Outcomes,	3(1):25-32,	2010	
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Reproducibility with pa0ents not from UCSD

•  “Local”	bias	of	studies	major	concern	
in	medical	field	

• Applied	model	derived	on	UC	San	
Diego	paZents	on	paZents	from	

•  UC	San	Francisco	EMR	
•  BIOSTAT—CHF	

•  A	study	from	69	centers	in	11	EU	countries		

• AUC	is	sta<s<cally	consistent	in	the	3	
cohorts	of	pa<ents			
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Applicability to all pa0ents, ie, not just the “high 
risk” and “low risk”
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Consistency	between		
the	3	cohorts	



Comparing NT-proBNP and Marker-HF 
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Amino-terminal	pro-B-type		
natriureZc	pepZde,	(NT-proBNP)		
is	a	well	validated	biomarker		
associated	with	HF		



Other features that did not have 0me to cover

Consistent	performance	in	
• Men	vs.	Women	
• As	a	funcZon	of	ethnicity	
• As	a	funcZon	of	age	
•  For	in-	vs.	out-paZents	(proxy	for	health	status)	
• PaZents	with	pulmonary	edema	vs.	other	HF	diagnoses	
• No	detectale	bias	due	to	excluding	paZents	with	missing	variables		
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Conclusion

•  Succeeded	in	designing	predicZve	risk	score	algorithm	for	HF	using	ML	
• Key	features,	some	based	on	HEP	experience	

•  Tight	data	collecZon	requirements	à	Clean	training/tesZng	samples	
•  Clear	definiZon	of	outcomes	using	the	extrema	
•  AutomaZc	inclusion	of	correlaZons	(potenZally	non-linear)	

• Paper	submi`ed	to	medical	journal	
•  StarZng	to	think	about	further	studies,	sZll	in	cardiology,	e.g.,	can	we	
predict	which	paZents	will	suffer	major	bleeding	with	anZcoagulants?	
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