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How did this start

Conversations between exp high energy physicists and clinical cardiologists:

* Attempts to predict heart failure (HF) mortality using clinical variables or risk
scores have not been very successful

* Fails in one or more of the following ways:
* [imited predictive power (poor AUC, typically < 0.7)
* loss of accuracy when applied to other cohorts or populations
* dependence on variables that are subjective or not readily available

There are many many risk-scores on the market
to the point that “risk-score fatigue” is prevalent



Today’s buzzword...Machine Learning (ML)

* In HEP have been using (simple) ML for > 20 years to
categorize “events” or “objects” as “signal” vs. “background”

* Event = final state of decay or of interaction
* Object = electrons, photons, bottom quarks, etc

e Can our experience be brought to bear?
* Signal/Background - Early death/Long term Survival



Primary Objective

Define a risk score aiming to avoid common pitfalls by:

e Using strict data collection and cleanup methodology that ensures
maintaining the correlations that define the physical state of the
system (patient) within a relatively limited period of time

* Having precise definitions of outcomes.

e Avoiding imputation by requiring all covariates used in the
creation of the model to be present.

 Limiting the number of inputs to a small number of widely
available covariates that are checked routinely in HF patients.

e Capturing the multi-dimensional correlations between the
covariates and the outcomes.




Methods and Study definition

* Retrospectively extracted de-identified EMR of patients in the UCSD
health system with 15t recorded diagnosis of Heart Failure.

* Used an iterative process to select a minimal, most common, and
discriminating set of variables (only 8)
« HEP software, TMVA in CERN Root package

* For patient to be included in the analysis all variables needed to be
present using data collected over a narrow time window (<7 days)

« Excluded patients: over 80, with an ICD, with indication of Sepsis
* Minimize dilution of outcomes



Statistics

Comments:

* Low statistics compared to
typical HEP problem

* Dirty data, big loss from
missing variables
e Systematics?

e Extracting data from the EMR
was a bit of an “adventure”

Starting sample
N =14,589

!

Remove: tool old, with artificial device,
with sepsis, dies within 7 days
N=11,239

!

Remove bad EMR
N=10,588

!

Remove patients with
missing variables
N=5,822




Cartoon of samples definition

N (Patients

S

90

High Risk cohort

N= 407

days

Lifetime distribution

Low Risk Cohort
N = 800

v

Index Event

800 days

Time (days)

Variables Used:

Diastolic blood pressure
Creatinine

Blood Urea Nitrogen

Hemoglobin

White blood cell count

Platelets

Albumin

Red Blood Cell Distribution Width



c 05 3 c 04 y . 3
Input Variables
008: 0.05¢ — 1 _— ]
% 5 10 15 20 25 Oy 5 10 15 20 25
Hemoalobin [a/dL] White blood cell count [1000 cells/uLl
Red - Low risk cohort - oa = 04
. . 2 0.35f 3 2 0.35F 3
Black - High risk cohort g o3 — § 03 :
ois ] oot :
0.1 ; 0.1F :
0.05F | ; 0.05F ;
* * Diastolic Blood Pressure I[mmHal Albumin [a/dL]
Important No ”silver bullet %030 40 50 60 70 80 90 100 110 120 0 1 235 4 5 6
- No single discriminating variable.
5 & ] c 0.6 L
- Each shows some separation. g ost : g ost 3
. . . i 04f E i 0.4f E
- But poor AUC, individually. 0.3f 0.3t
0.2F 3 0.2F ;
0.1E —1— 3 0.1k 3
005 T 75 2 25 Cs gﬁ[ 4.%'—% 067625 3& 4'% Us!o 6,8?0 80[ 9(}d|1j)o
Key is the combination and correlations oo R
between the whole set § o R —— :
£ 055t = £ ozar -
0.2p T (- 0.2F E
0.15f E 0.15f E
0.1F \ 3 0.1 ;
o.og; D ! S Iy e ;
0 100 200 300 400 500 600 q 0 1 14 16 18 20 22 24 26 28 30

Platelets [1000 cells/ulLl Red Blood Cell DistribLﬁion Width %]



MARKER-HF Training and Performance

A Boosted Decision Tree algorithm was used (200 trees, maximum depth of 2) to
derive a model and relate variables to the known outcome using the training

subset of the sample only. *Similar results obtained with ANN)
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Does it make sense clinically? & ~. | §%§§++++
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Comparisons with similar risk scores

IMRS: American Journal of Medicine,
122(6)L550-558, 2009

GWTG: Circulation: Cardiovascular

Quality and Outcomes, 3(1):25-32, 2010
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Reproducibility with patients not from UCSD

* “Local” bias of studies major concern
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cohorts of patients
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Applicability to all patients, ie, not just the “high
risk” and “low risk” _

Consistency between
the 3 cohorts
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Comparing NT-proBNP and Marker-HF
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Other features that did not have time to cover

Consistent performance in

* Men vs. Women

* As a function of ethnicity

* As a function of age

* For in- vs. out-patients (proxy for health status)

e Patients with pulmonary edema vs. other HF diagnoses

* No detectale bias due to excluding patients with missing variables
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Conclusion

* Succeeded in designing predictive risk score algorithm for HF using ML

* Key features, some based on HEP experience
* Tight data collection requirements = Clean training/testing samples
* Clear definition of outcomes using the extrema
e Automatic inclusion of correlations (potentially non-linear)

* Paper submitted to medical journal

e Starting to think about further studies, still in cardiology, e.g., can we
predict which patients will suffer major bleeding with anticoagulants?



