1. For which of the vector diagram it is true that $\vec{T}_1 - \vec{T}_2 = \vec{T}_3$ (a) $\tau_1 \overbrace{\tau_3}^{\tau_2}$ (b) $\overbrace{\tau_1}^{\tau_2} \overbrace{\tau_1}^{\tau_3}$ (c) $\overbrace{\tau_1}^{\tau_3} \overbrace{\tau_2}^{\tau_2}$ (d) $\tau_1 \overbrace{\tau_3}^{\tau_2}$ (e) $\tau_2 \overbrace{\tau_3}^{\tau_1}$

<u>Correct answer is (b)</u>. You can see from the picture that $T_1 = T_2 + T_3$

- 2. An object is shot upward at 34.3 m/s. How high does it go? (a) 60.0 m (b) 180.1 m (c) 120.0 m (d) 102.9 m (e) 35.0 m V²-V₀² = -2g∆y V=0 at the top \rightarrow V₀² /2g = ∆y \rightarrow Dy = 34.3²/(2*9.81)m=60.0 m <u>Correct anser is (a)</u>
- 3. A vector makes an angle of 60° with the x axis of a coordinate system. Which of the following statements is true (V_x and V_y are the x and y components of the vector, V is the magnitude of the vector)
 (a) V_x > V_y
 (b) V_y > V_x
 (c) V_y > V
 (d) V_x > V
 V_x=Vcos60 and V_y=V sin60 sin60 and cos60 are < 1, therefore (c) and (d) are wrong. Also sin60>cos60 → Correct answer is (b)

4. A car travels due east for a distance of 3 miles and then due north for an additional 4 miles before stopping. What is the angle α of the shortest path relative to due north?

(α) $\alpha = \cos^{-1}(3/5)$ (b) $\alpha = \sin^{-1}(5/3)$ (c) $\alpha = \sin^{-1}(4/3)$ (d) $\alpha = \tan^{-1}(3/4)$

(b)

3=4 tan $\alpha \rightarrow$ correct answer is (d)

- 5. If the acceleration vector of a body is perpendicular to the velocity vector, which of the following must be true?
 - (a) Only the speed is changing (b) Only the direction is changing
 - (c) Both speed and direction are changing (d) Speed and direction are not changing

Correct answer is (b). See the last paragraph of Section 3.5 in the book