1. An object initially at rest breaks up into two pieces of unequal masses when a spring-loaded device is released. Let K₁ be the kinetic energy of the larger mass and K₂ that of the smaller mass right after they separate. Which of the following statements is correct?

(A)
$$K_1 > K_2$$

(A)
$$K_1 > K_2$$
 (B) $K_1 < K_2$ (C) $K_1 = K_2$

(C)
$$K_1 = K_2$$

$$P_1 = m_1 v_1 \quad P_2 = m_2 v_2 \quad \text{but } P_1 = P_2 \rightarrow v_1 = (m_2/m_1) v_2$$
 $K_1 = \frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 (m_2/m_1)^2 v_2^2 = (m_2/m_1) (\frac{1}{2} m_2 v_2^2) = (m_2/m_1) K_2$
Since $(m_2/m_1) < 1$ we have $K_1 < K_2 \rightarrow \text{Correct answer is (B)}$

2. A railroad car of mass m and speed v collides and sticks to an identical railroad car that is initially at rest. After the collision, the kinetic energy of the system is

(A)
$$\frac{1}{2}$$
mv²

(B)
$$\frac{1}{3}$$
 mv²

(C)
$$\frac{1}{4}$$
 mv²

(A)
$$\frac{1}{2}$$
mv² (B) $\frac{1}{3}$ mv² (C) $\frac{1}{4}$ mv² (D) $\frac{1}{8}$ mv² (E) mv²

(E)
$$mv^2$$

$$P_{initial} = mv$$
 $P_{final} = 2mv_{final}$ $\rightarrow v_{final} = \frac{1}{2}v$

$$K_{final} = \frac{1}{2} (2m) v_{final}^2 = \frac{1}{4} mv^2 \rightarrow \underline{Correct answer is (C)}$$

3. A red ball with a velocity of +3.0 m/s collides head-on with a yellow ball of equal mass moving with a velocity of -2.0 m/s. What is the velocity of the yellow ball after the collision

(A) +3.0 m/s (B) 0 (C) -2.0 m/s (D) +2.5 m/s (E) +5.0 m/s
$$P_{\text{initial}} = mv_{\text{1init}} + mv_{\text{2initial}}$$
 and $P_{\text{final}} = mv_{\text{1final}} + mv_{\text{2final}}$ (red is 1, yellow is 2)

$$\rightarrow$$
 $v_{1final} = v_{1init} + v_{2initial} - v_{2final}$

$$\frac{1}{2}mv^{2}_{1init} + \frac{1}{2}mv^{2}_{2init} = \frac{1}{2}mv^{2}_{1final} + \frac{1}{2}mv^{2}_{2final}$$

$$\rightarrow v^{2}_{1init} + v^{2}_{2init} = v^{2}_{1final} + v^{2}_{2final}$$

$$\rightarrow v_{1init}^2 + v_{2init}^2 = (v_{1init} + v_{2initial} - v_{2final})^2 + v_{2final}^2$$

$$\rightarrow$$
 0 = 2 $v_{2final}^2 - 2 v_{2final} (v_{1init} + v_{2initial}) + 2 v_{1init} v_{2initial}$

- → This has two solutions
 - 1. $v_{2final} = -2$ m/sec (which is the trivial solutions where nothing happens)
 - 2. $v_{2final} = +3 \text{ m/sec} \rightarrow \underline{\text{Correct answer is (A)}}$

Of course we could have saved us all this work by noting that the two masses are the same and obviously a solution where we exchanged the velocities of the read and yellow ball would satisfy conservation of both energy and momentum

- 4. An elastic collision of two objects is characterized by the following
- (A) Momentum is conserved (B)Kinetic Energy is conserved
- (C) Both (A) and (B) (D) Neither (A) nor B

Correct answer is (C) This is the definition of elastic collision

- 5. A 75 Kg swimmer dives horizontally with speed 4 m/sec off an initially stationary 500 Kg raft. What is the speed of the raft immediately after the dive?
 - (a) 0 m/sec (b) 0.2 m/sec (c) 0.5 m/sec (d) 0.6 m/sec (e) 4.0 m/sec

$$P_{raft} = P_{swimmer} = m_{swimmer} v_{swimmer}$$
 and $P_{raft} = m_{raft} v_{raft}$
 $\rightarrow V_{raft} = m_{swimmer} v_{swimmer} / m_{raft} = 75 * 4 / 500 m/sec = 0.6 m/sec$

Correct answer is (D)