- 1. A constant net force acts on an object. Describe the motion.
- (A) constant non-zero velocity. (B) constant non-zero acceleration.
- (C) increasing acceleration. (D) decreasing acceleration.
- (E) zero acceleration.

Newton's 2^{nd} law: $F=ma \rightarrow constant F$ means constant $a \rightarrow Correct answer is B$

- 2. A truck tows a car whose mass is ¼ that of the truck. The force exerted by the truck on the car is 6000 N. The force by the car on the truck is
- (A) 1500 N. (B) 24000 N. (C) 3000 N. (D) 6000 N. (E) 12000 N. Newton's 3^{rd} law: equal and opposite force \rightarrow Correct answer is D
- 3. A block of mass M slides down a frictionless plane inclined at an angle θ with the horizontal. The normal reaction force exerted by the plane on the block is
- (A)Mg (B)Mg $sin\theta$ (C)Mg $cos\theta$ (D)Mg $tan\theta$ (E)zero, since plane is frictionless.

<u>Correct answer is C</u> (see example 5.9 in the book)

- 4. A 777 aircraft has a mass of 300,000 kg. At a certain instant during its landing, its speed is 27.0 m/s. If the braking force is 445,000 N, what is the speed of the airplane 10.0 s later?
- (A) 10.0 m/s (B) 12.2 m/s (C) 14.0 m/s (D) 18.0 m/s (E) 20.0 m/s

$$F = ma \rightarrow a = F/m$$

Take positive x in direction of motion, so a=-F/m and v_0 is positive

$$V = v_0 + at = v_0 - Ft/m = 27 \text{ m/s} - 445,000*10/300,000 \text{ m/s}$$

 $V = 12.2 \text{ m/s} \rightarrow \text{Correct answer is B}$

- 5. A force of 120 N is applied to an object of mass 30 kg. Its acceleration is
- (A) 3600 m/s^2 . (B) 150 m/s^2 . (C) 4.0 m/s^2 (D) 2.0 m/s^2 . (E) 0.25 m/s^2 .

F=ma \rightarrow a=F/m=120/30 m/s² = 4 m/s² \rightarrow Correct answer is C