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Last time: Gauss's Law

• To formulate Gauss's law, introduced a 
few new concepts

Vector Area
Electric Field Flux

• Let's review them
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Vector Area
• A vector associated with a surface
• Magnitude of the vector = area of surface
• Direction of vector: perpendicular to surface

• Ambiguity: why not like this

• Choice of direction is arbitrary
But you must specify it!
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Electric Field Flux
• Definition:

• In general could have non-uniform E-field 
and non-flat surface.  Then

This is called a surface integral

Flux always defined
with respect to some area

(flux through area)
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Gauss's Law
• The electric field flux through a closed

surface is proportional to the total charge
enclosed by the surface

Note:     means integral over a closed surface

q2

q1

q3
q4

q5 ΦE does not depend
on q5 (outside surface)

always points outward
Qenclosed = q1 + q2 + q3 + q4
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Another example (similar to Problem 22.61)
Insulating sphere of radius R charge density ρ.
The sphere has a hole at radius b of radius a.
Find the E field in the insulator and in the hole.

Trick:  use principle of superposition:
1.solid sphere radius R, charge density ρ
2.solid sphere, radius a, charge density -ρ
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Trick:  use principle of superposition:
1. solid sphere radius R, charge density ρ
2. solid sphere, radius a, charge density -ρ

Use result of "example 2" from last lecture for field of 1:

Here I wrote it as a vector equation.  The r-vector points from
the center of the big sphere to the point at which we want E.

Careful:      here is not a constant vector.  We want the field at 
some point P.  The vector     is the vector that tells us where
this point P actually is!

P

Recast this using ρ = (Q/V)  and V = 4πR3/3
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Now the field due to the fictitious
negative charge density in the hole.
Call this field E2.
First, look outside the hole.
Draw imaginary (gaussian) sphere
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Radius of gaussian sphere
Want E2, electric field of sphere of radius a, charge density ρ
Using previous result, outside sphere radius a, we can 
pretend that all the charge is at the center 
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On the other hand, inside the sphere of radius a:

Recap of where we are:
• Want field anywhere for r<R
• Trick: add fields from

1.solid sphere of radius R, q-density +ρ
2.solid sphere of radius a, q-density -ρ

or

inside the hole outside the hole



11

Now it is simply a matter to adding the two fields:

Inside the hole:

Uniform!

Outside the hole:
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Charges in a conductor
• In a conductor some of the electrons in the 

material are essentially free to move under 
the influence of electric fields.

• A conductor can have net negative charge, 
or net positive charge, or it can be neutral.

• Net negative charge if it acquired extra 
electrons from somewhere 

e.g., another conductor
• Net positive charge if it gave away some of 

its electrons
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Charges in a conductor (cont.)

• We are concerned with electrostatic situations
electrostatic: the charges are not moving

• We said that in conductors some electrons are free 
to move under the influence of electric field

• In electrostatic situations the electric field must be 
zero everywhere inside the conductor

otherwise the free charges would be moving and the 
configuration would not be electrostatic anymore!



14

Charges in a conductor (cont.)
• Now apply Gauss's law Some conductor

A closed surface 
somewhere 
inside the conductor

• The electric field is zero inside conductor
ΦE is zero for any closed surface (inside conductor)
Qenclosed by any surface is zero

• Make the volume enclosed by the surface 
infinitesimally small

No net charge anywhere inside a conductor!!!
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Charges in a conductor (cont.)
• We just showed that there can be no net 

charge anywhere inside a conductor
• Yet we know that we can charge-up a 

conductor
• So where does the charge go?

The excess charge on a conductor in an
electrostatic situation is always on the surface
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Cavities in a conductor
Solid charged conductor:

all the excess charge (+Q) is on the surface

Now suppose we have a cavity inside:

The flux through any gaussian surface A
enclosing the cavity is zero because 
the field is zero in the conductor

the enclosed charge is zero
no charge on the surface of the cavity

Now suppose we place a charge inside the cavity:
The flux through the surface A is still zero.

the total charge enclosed is zero
charge -q on the surface of the cavity

(we say that charge has been induced on the surface)
charge Q+q on the outer surface
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Look at the cavity again

• Inside the cavity there can be no electric field.
• If we want to shield a region of space from 

external electric fields, we can surround it by a 
conductor

• This is called a Faraday cage.
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Field on conductor surface

• No flux through the sides
• No flux through the surface inside conductor
• Total flux = flux through top surface = AE



19

Irregularly shaped conductor

• e.g., fairly flat at one end and relatively pointed at the other. 
• Excess of charge move to the surface.
• Forces between charges on the flat surface tend to be parallel to the 

surface. 
• Charges move apart until repulsion from other charges creates 

equilibrium.
• At sharp ends, forces are predominantly directed away from surface.
• Less of tendency for charges located at sharp edges to move away

from one another. 
• Large σ and therefore large fields (and forces) near sharp edges.

-

- -
-

This is the principle behind the lightning rod.
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Example Problem
Long straight wire surrounded by hollow metal cylinder.  
Axis of the wire coincides with axis of cylinder.  Wire has 
charge-unit-length λ.  Cylinder has charge per unit length 2λ.
(a)Find charge-per-unit-length on inner and outer surfaces

of cylinder.
(b) The electric field outside the cylinder a distance r from the axis. 

λin = charge-unit-length on inside of cylinder
λout = charge-unit-length on outside of cylinder

λin + λout = 2λ
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Top View:

λ

λin

λout

λin + λout = 2λ

Choose a gaussian cylindrical surface with same axis but 
with radius in between the inner and outer radius.

Gaussian surface

Flux through this surface is zero.  Because the electric
field in the conductor is zero.

By Gauss's law, total charge enclosed is zero
λ + λin = 0  so λin = -λ.

But λin + λout = 2λ
λout = 3λ
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Now want the field a distance r from the axis (outside cylinder)

λ

λin

λout

λin = -λ
λout = 3λ

r

By symmetry, electric field can only point radially.

Draw Gaussian cylindrical surface of radius r

ΦE = E(r) C d
where C = circumference cylinder

d = length of cylinder
But C = 2π r

ΦE = 2 π E(r) d r

Gauss's Law: ΦE = Qenclosed/ε0
ΦE = (λ + λin + λout)d/ε0

ΦE = 3λ d/ε0
Directed outward if λ>0
Directed inward if λ<0
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Example Problem 
The electric field on the surface of an irregularly shaped conductor
varies between 56 kN/C and 28 kN/C. Calculate the local surface 
charge density at the point on the surface where the radius of curvature
is maximum or minimum

Maximum electric field when charge density is highest.
This happens when the surface has sharp edges, i.e., 
when the radius of curvature is minimum.

Minimum electric field when charge density is lowest.
This happens when the surface is flattest, i.e.,  when 
the radius of curvature is maximum.
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Example Problem
A square plate of Cu with 50 cm sides has no net charge.  It is 
placed in a region of uniform electric field 80 kN/C directed 
perpendicular to the plate.  Find
(a) The charge density on each face
(b) The total charge on each face

1. Make a drawing
2. Pick gaussian surfaces

• behind (box A)
• in front (box B)

3. Get ΦA and ΦB

A

B

There is no electric field inside the conductor and the
electric field is parallel to the "long" sides of the boxes.

only contribution to ΦA and ΦB are from the vertical surfaces
outside the conductor

Let S = area of vertical surfaces if gaussian boxes
ΦA = - ES  (field goes into the box)
ΦB = + ES (field goes out of the box)
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A

B
σ1

σ2

ΦA = -ES and ΦB=+ES

The charge enclosed in box A is Sσ1
The charge enclosed in box B is Sσ2

Then, by Gauss's Law:
σ1 = - ε0 E = - 8.85 10-12 x 80,000 C/m2 = - 7.1 10-7 C/m2

σ2 = -σ1 = + 7.1 10-7 C/m2

Each surface has area (50 cm)2 = 0.25 m2

each surface has charge 0.25 x 7.1 10-7 C = 1.8 10-7 C
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Example Problem (22.39)
Concentric conducting spherical shells
Inner shell: charge +2q
Outer shell: charge +4q
Calculate electric field for
(a) r<a
(b) a<r<b
(c) b<r<c
(d) c<r<d
(e) r>d

Some of these answers are trivial.
• In cases (b) and (d) the field is zero (inside conductor)
• In case (a) the field is also zero (Faraday cage!)
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Inner shell: charge +2q
Outer shell: charge +4q
Want field for b<r<c and
r>d

First, note that by symmetry the field can only be radial.
Then, construct spherical gaussian surface of radius r
Area of the surface = 4πr2

Flux through the surface =4π r2E(r)
Charge enclosed:

If b<r<c, Qencloded = 2q
If r>d, Qenclosed = 6q
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Small shell: charge +2q
Large shell: charge +4q

Next question:
What are the charges on the four surfaces?

Inner surface of small shell (r=a).
No electric field no charge on this surface

Outer surface of small shell (r=b)
Total charge on small shell = +2q.
There is no charge on the other surface of this conductor
All the charge of the shell (+2q) must be on this surface!

Inner surface of large shell (r=c)
Gaussian spherical surface, c<r<d. 
No field (in conductor!) no flux enclosed charge = 0
Charge on this surface + charge on small shell (=+2q) must add to 0
Charge on this surface = -2q

Outer surface of large shell (r=d)
Total charge on large shell = + 4q.  Charge on other surface = -2q
Charge on this surface = + 6q


