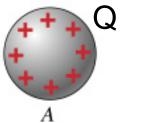
Fall 2004 Physics 3 Tu-Th Section

> Claudio Campagnari Lecture 6: 12 Oct. 2004

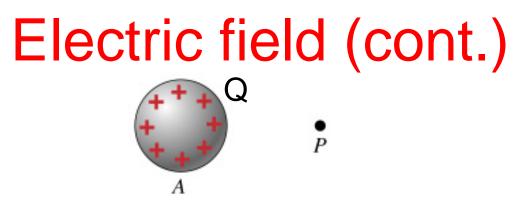
Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Electric Field

Coulomb force between two charges:



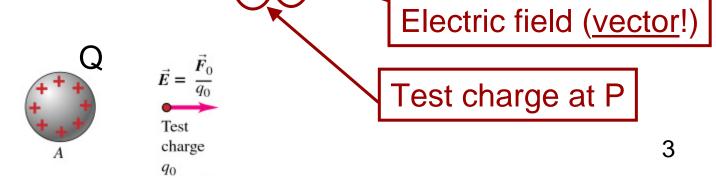
If I place a charge q_0 at the point P, this charge will feel a force due to Q



• One way to think about it is this:

The charge Q somehow modifies the properties of the space around it in such a way that another charge placed near it will feel a force.

- We say that Q generates an "electric field"
- Then a test charge q_0 placed in the electric field will feel a force $\vec{F}_0 = q_0 \vec{E}$



Electric Field Definition

 If a test charge q₀ placed at some point P feels an electric force F₀, then we say that there is an electric field at that point such that:

$\vec{F}_0 = q_0 \vec{E}$

 This is a vector equation, <u>both</u> force and electric fields are <u>vectors</u> (have a magnitude <u>and</u> a direction)

- Electric field felt by some charge is created by all <u>other</u> charges.
- Units: Force in N, Charge in C \rightarrow Electric Field in N/C

Gravitational Field

- The concept of "field" should not be new to you
- Mass *m* near the surface of the earth, then downward force *F=mg* on the mass
- Think of it as $\vec{F} = m\vec{g}$ where \vec{g} is a gravitational field vector
 - Constant in magnitude and direction (downwards)
- Correspondence

Electric Field \leftrightarrow Gravitational Field Eletric charge \leftrightarrow Mass

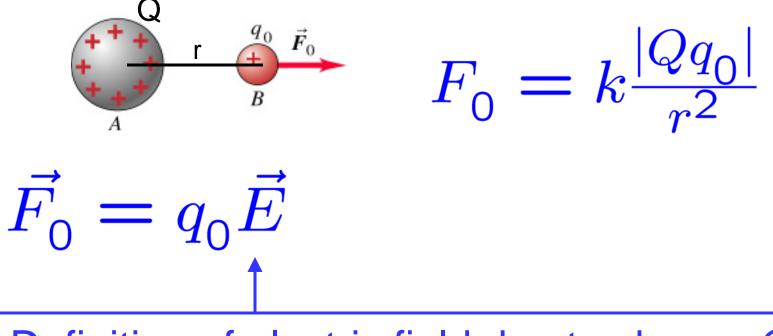
A detail

- Imagine that have some arrangement of charges that creates an electric field
- Now you bring a "test charge" q_0 in
- q₀ will "disturb" the original charges
 > push them away, or pull them in
- Then the force on q₀ $\vec{F} = q_0 \vec{E}$ will depend on how much the initial charge distribution is disturbed

 \succ which in turn depends on how big q₀ is

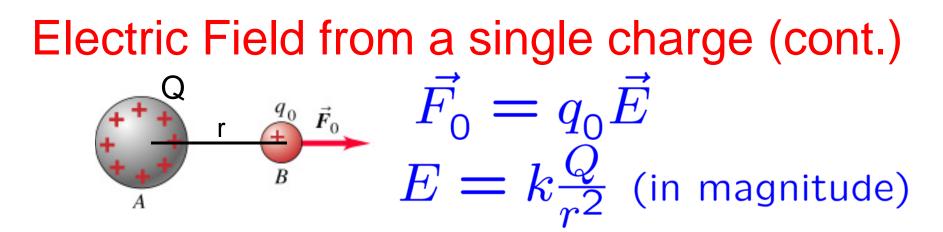
- This will not do for a definition of E
- → E is defined for an infinitesimally small test charge (limit as $q_0 \rightarrow 0$) ⁶

Electric Field from a single charge

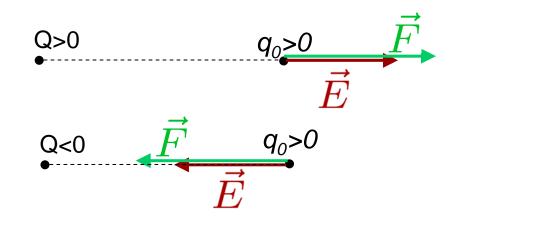


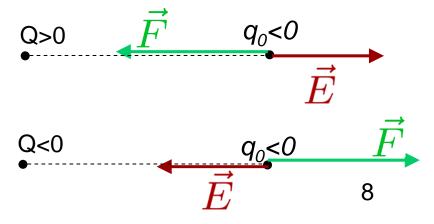
Definition of electric field due to charge Q at the point where charge q_0 is placed.

 $\frac{\text{Magnitude}}{\text{to }Q \text{ at a distance }r \text{ from }Q.}$



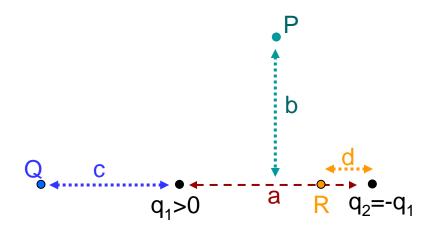
- Direction of the electric field at point P?
- Points along the line joining Q with P.
 If Q>0, points away from Q
 If Q<0, points towards Q





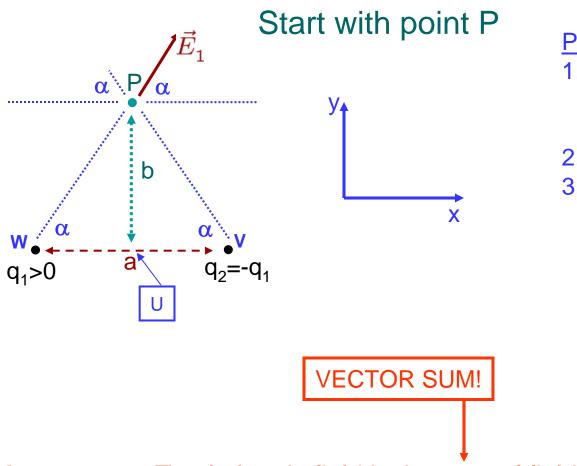
Example 1 (electric field of a dipole)

Dipole: a collection of two charges $q_1 = -q_2$



Find the electric field, magnitude and direction at

- 1. Point P
- 2. Point Q
- 3. Point R



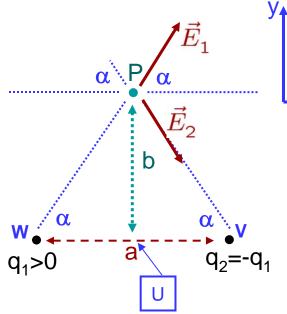
Problem setup:

- 1. Complete labels
 - Label point U,V,W
 - Angle α
- 2. Choose axes
- 3. Work out some geometrical relations
 - UW=UV= ½ a
 - UP=UW tanα
 b = ½ a tanα
 - UP=WP sin α b = WP sin α
 - UW=WP $\cos \alpha$ $\frac{1}{2} a = WP \cos \alpha$

Key concept: Total electric field is the sum of field due to q_1 and field due to q_2

Electric field due to q₁: points away from q₁ because q₁ > 0. Call it E₁ Then: $E_1 = k \frac{q_1}{|WP|^2} = k \frac{q_1 \sin^2 \alpha}{b^2}$

In components: $E_{1x} = E_1 \cos \alpha$ and $E_{1y} = E_1 \sin \alpha$ ¹⁰



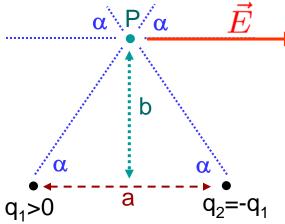
$$E_1 = k \frac{q_1}{|WP|^2} = k \frac{q_1 \sin^2 \alpha}{b^2}$$

 $\overrightarrow{x} \quad E_{1x} = E_1 \cos \alpha \text{ and } E_{1y} = E_1 \sin \alpha$

Now need $E_2 = \text{electric field due to } q_2$ Points towards q_2 (because $q_2 < 0$)

Symmetry:

• $|q_1| = |q_2|$ and identical triangles PUW and PUV $\Rightarrow E_{2x} = E_{1x}$ and $E_{2y} = -E_{1y}$ **Total electric field** $\vec{E} = \vec{E}_1 + \vec{E}_2$ $\Rightarrow E_y = 0$ and $E_x = 2E_{1x} = 2E_1 \cos \alpha$ $E = E_x = 2k \frac{q_1 \sin^2 \alpha \cos \alpha}{b^2}$ 11



$$E = E_x = 2k \frac{q_1 \sin^2 \alpha \cos \alpha}{b^2}$$

Now need to express $\sin^2 \alpha$ and $\cos \alpha$ in terms of stuff that we know, i.e., a and b. $q_2=-q_1$ Note that I do everything with symbols!!

We had

$$b = \frac{1}{2}a \tan \alpha = \frac{1}{2}a \frac{\sin \alpha}{\cos \alpha}$$

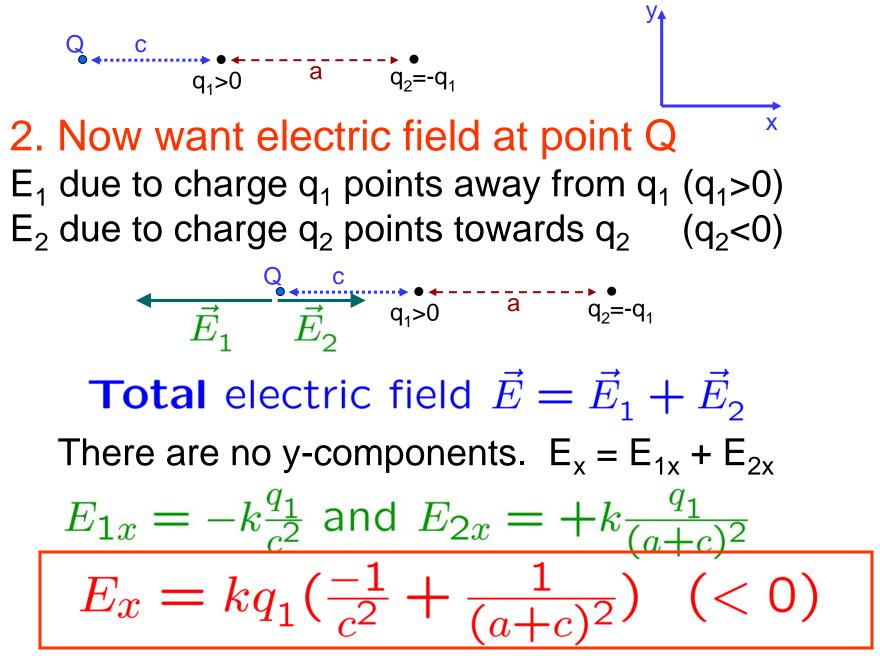
$$\rightarrow \sin \alpha = 2\frac{b}{a} \cos \alpha$$

$$\sin^2 \alpha \cos \alpha = 4\frac{b^2}{a^2} \cos^3 \alpha$$

Also, trig identity: $\cos^{2} \alpha = \frac{1}{1 + \tan^{2} \alpha} = \frac{1}{1 + (\frac{2b}{a})^{2}} = \frac{a^{2}}{a^{2} + 4b^{2}}$ $\cos^{3} \alpha = \frac{a^{3}}{(a^{2} + 4b^{2})^{\frac{3}{2}}}$ $\sin^{2} \alpha \cos \alpha = 4\frac{b^{2}}{a^{2}}\cos^{3} \alpha = 4\frac{b^{2}}{a^{2}}\frac{a^{3}}{(a^{2} + 4b^{2})^{\frac{3}{2}}} = \frac{4ab^{2}}{(a^{2} + 4b^{2})^{\frac{3}{2}}}$

$$E = E_x = 2k \frac{q_1 \sin^2 \alpha \cos \alpha}{b^2}$$
$$\sin^2 \alpha \cos \alpha = \frac{4ab^2}{(a^2 + 4b^2)^{\frac{3}{2}}}$$

$$E = E_x = 8k \frac{q_1 a}{(a^2 + 4b^2)^{\frac{3}{2}}}$$



3. Now want electric field at point R E_1 due to charge q_1 points away from q_1 ($q_1>0$) E_2 due to charge q_2 points towards q_2 ($q_2<0$)

$$q_1 > 0 \bullet \bullet \bullet = \bullet \bullet q_2 = -q_1 \rightarrow \vec{E}_1 \text{ and } \vec{E}_2$$

Total electric field $\vec{E} = \vec{E}_1 + \vec{E}_2$

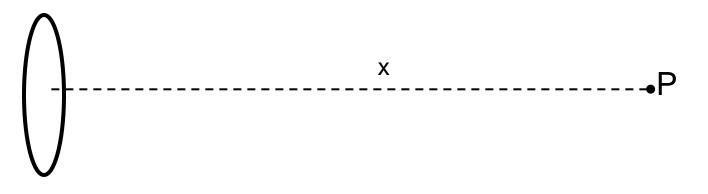
There are no y-components.
$$E_x = E_{1x} + E_{2x}$$

 $E_{1x} = +k \frac{q_1}{(a-d)^2}$ and $E_{2x} = +k \frac{q_1}{d^2}$
 $E_x = kq_1(\frac{1}{(a-d)^2} + \frac{1}{d^2})$

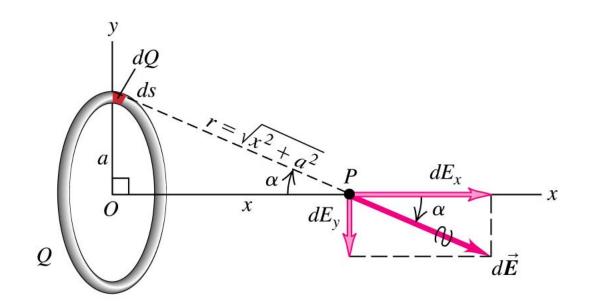
15

X

Example 2 (field of a ring of charge)



- Uniformly charged ring, total charge Q, radius a
- What is the electic field at a point P, a distance *x*, on the axis of the ring.
- How to solve
 - Consider one little piece of the ring
 - Find the electric field due to this piece
 - Sum over all the pieces of the ring (<u>VECTOR</u> SUM!!)



 $d\vec{E}$ = electric field due to a small piece of the ring of length ds

dQ = charge of the small piece of the ring Since the circumference is $2\pi a$, and the total charge is Q:

 $dQ = Q (ds/2\pi a)$

$$dE = k\frac{dQ}{r^2} = k\frac{dQ}{x^2 + a^2}$$

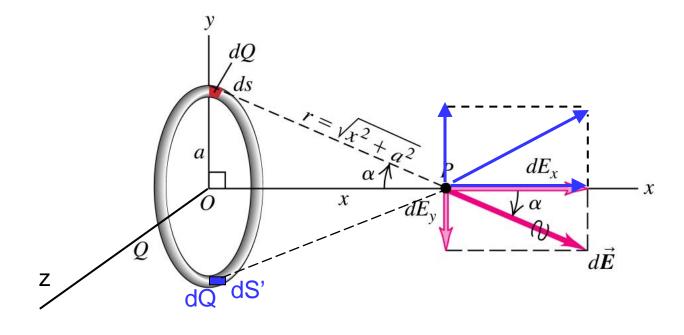
17



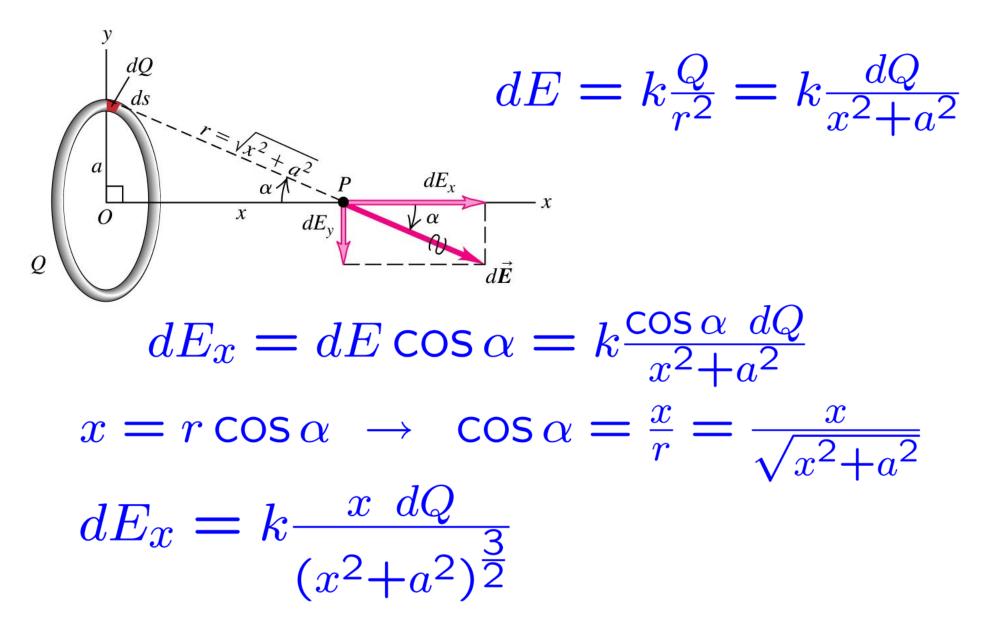
- The next step is to look at the components
- Before we do that, let's think!
 - > We are on the axis of the ring
 - There cannot be any <u>net</u> y or z components
 - A net y or z component would break the azimuthal symmetry of the problem

→ Let's just add up the x-components and forget about the rest!

What is going on with the y and z components?



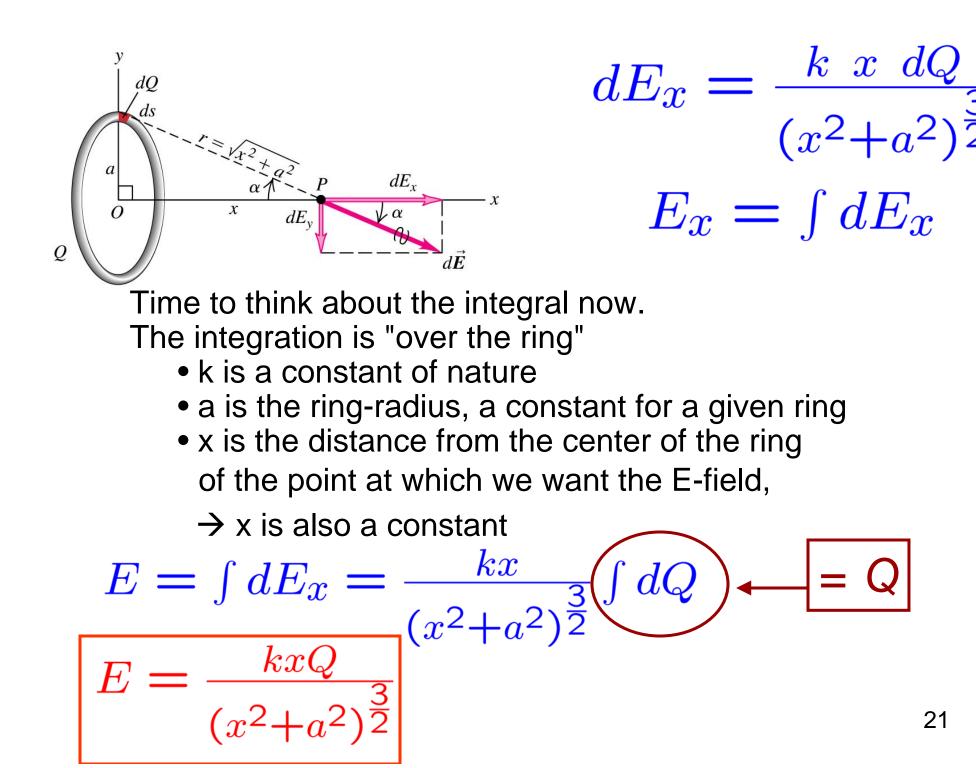
The y (or z) component of the electric field caused by the element ds is always exactly cancelled by the electric field caused by the element ds' on the other side of the ring



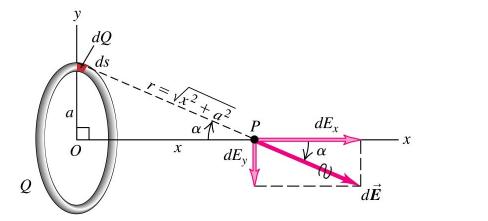
 $E_x = \int dE_x$

20

Now we sum over the whole ring, i.e. we take the integral:



Sanity check: do limiting cases make sense?

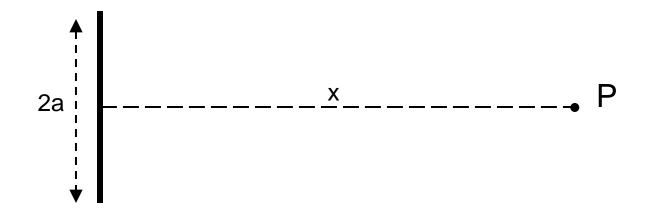


$$E = \frac{kxQ}{(x^2 + a^2)^{\frac{3}{2}}}$$

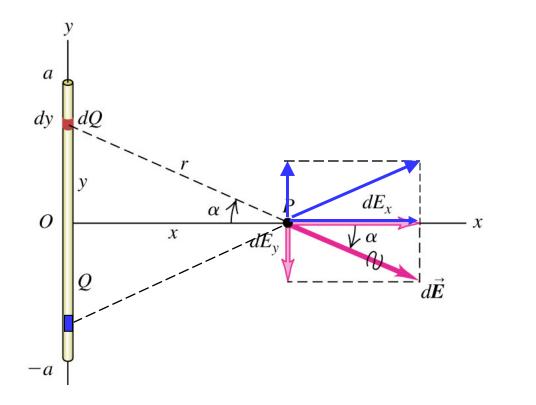
What do we expect for x=0 and $x \rightarrow \infty$?

- At x=0 expect E=0
 - Again, because of symmetry
 - > Our formula gives E=0 for x=0 \odot
- As $x \rightarrow \infty$, ring should look like a point.
 - > Then, should get $E \rightarrow kQ/x^2$
 - > As x→∞, (x²+a²) → x²
 - ≻Then E → $kxQ/x^3 = kQ/x^2$ ⓒ

Example 3 (field of a line of charge)



- Line, length 2a, uniformly charged, total charge Q
- Find the electric field at a point P, a distance x, on axis



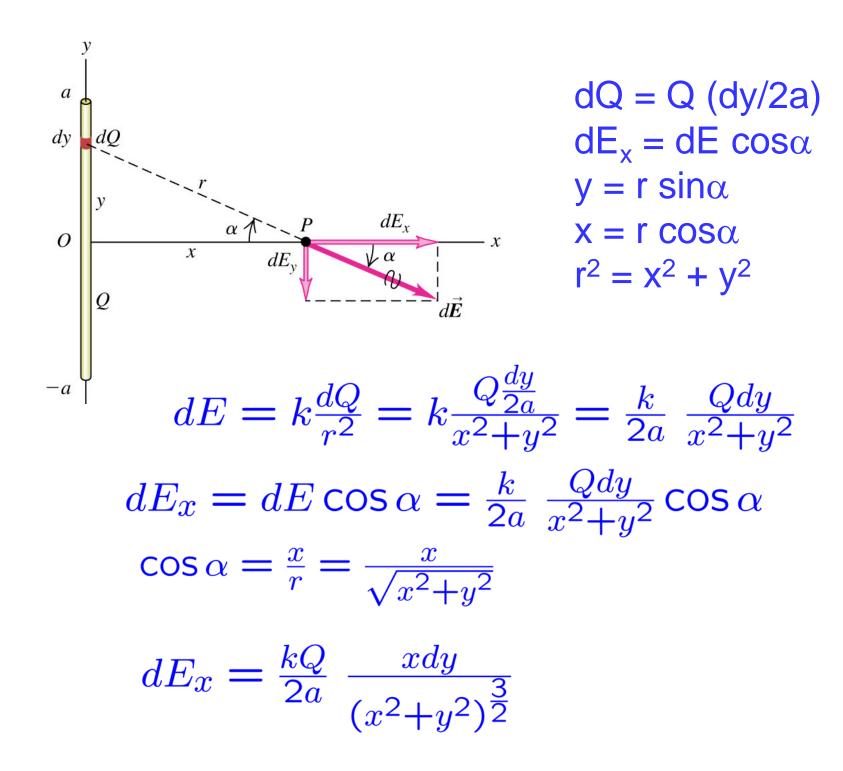
As in the case of the ring, consider field due to small piece (length dy) of the line.

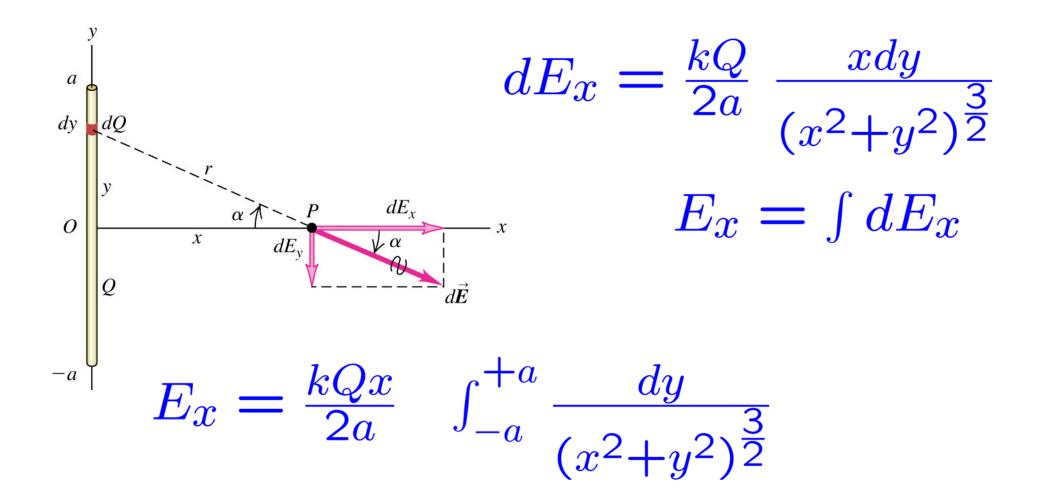
Charge dQ = Q dy/(2a)

As in the case of the ring, no net y-component

Because of cancellation from pieces at opposite ends

→ Let's just add up the x-components

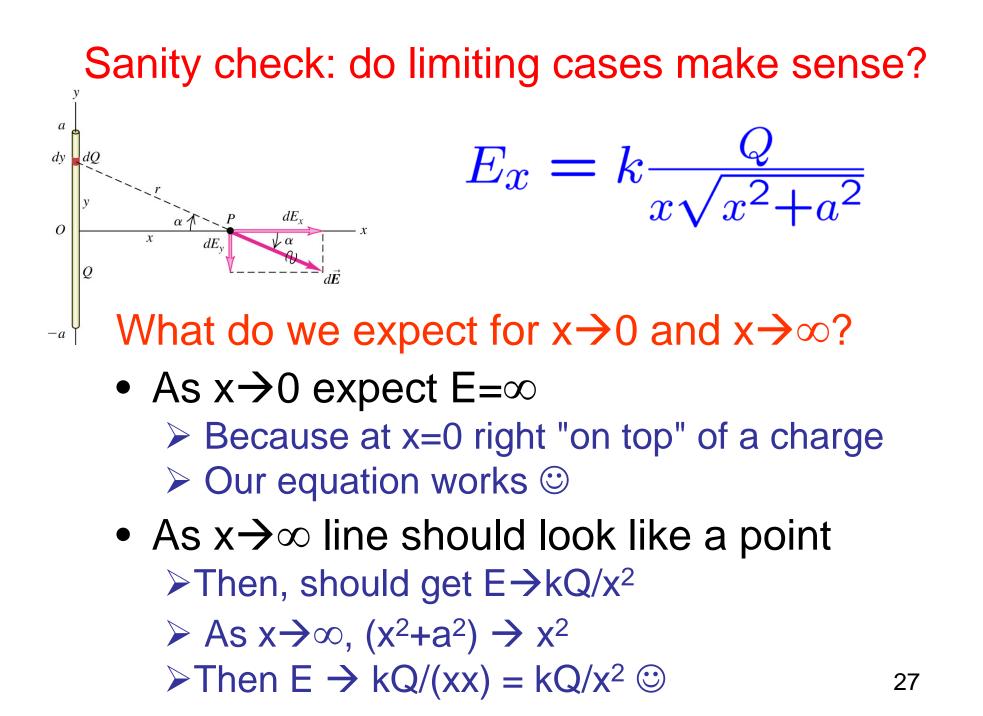


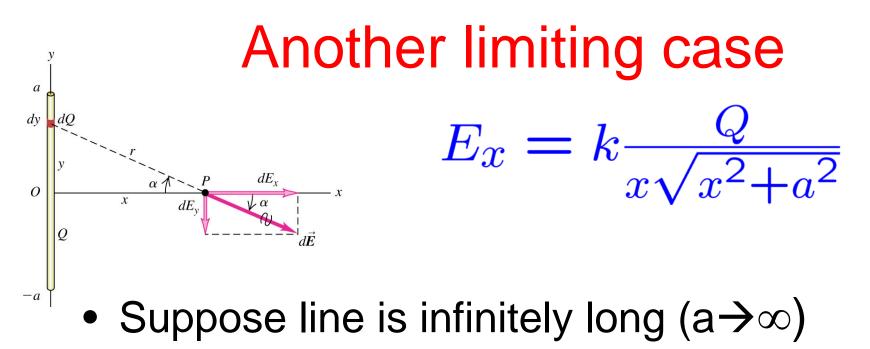


Look up this integral in a table of integrals

$$E_x = k \frac{Q}{x\sqrt{x^2 + a^2}}$$

26





- Define linear charge density λ=Q/2a
 ≻ Charge-per-unit-length
- If $a \rightarrow \infty$, but x stays finite: $x^2 + a^2 \rightarrow a^2$
- Then, denominator \rightarrow xa

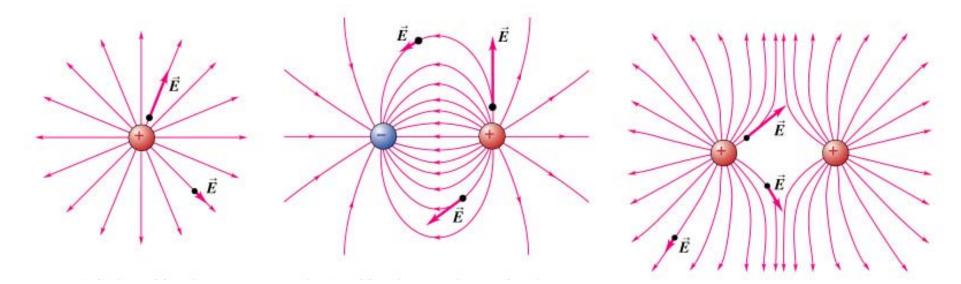
$$E_x \to k \frac{Q}{xa} = k \frac{2\lambda}{x}$$

Jargon and common symbols

- If you have charge on a line (e.g. wire)
 ≻Linear charge density (λ=Q/L)
 = charge-per-unit-length
- If you have charge on some surface
 - Surface charge density (σ=Q/A)
 = charge-per-unit-area
- If you have charge distributed in a volume
 - >Volume charge density ($\rho=Q/V$)
 - = charge-per-unit-volume

Electric Field Lines

- A useful way to visualize the electric field
- Imaginary lines that are always drawn parallel to the direction of the electric field
- With arrows pointing in the direction of the field



Some properties:

- Lines always start on +ve charges, end on -ve charges
- Density of lines higher where the field is stronger
- Lines never cross
 - Because at each point the field direction is <u>unique</u>