Fall 2004 Physics 3 Tu-Th Section

> Claudio Campagnari Lecture 4: 5 Oct. 2004

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Last time….

Sound:

¾A longitudinal wave in a medium.

Displacement vs. pressure (last time...)

• Can describe sound wave in terms of displacement or in terms of pressure

Bulk Modulus (last time...)

A measure of how easy it is to compress a fluid.

$$
B = -V\frac{dP}{dV}
$$

Ideal gas: $B = \gamma I$

 $\gamma = \frac{C_P}{C_V}$

 γ ~ 1.7 monoatomic molecules (He, Ar,..) γ ~ 1.4 diatomic molecules (O $_2$, N $_2,..)$ γ ~ 1.3 polyatomic molecules (CO $_{2},..)$

Heat capacities at constant *P* or *V*

For air: v=344 m/sec at 20 $^{\rm o}$ C

Intensity (last time...)

- The wave carries energy
- The intensity is the <u>time average</u> of the power carried by the wave crossing unit area.
- Intensity is measured in W/m2

Decibel (last time...)

- A more convenient sound intensity scale ¾more convenient than W/m2.
- $\bullet\,$ The <u>sound intensity level β </u> is defined as

$$
\beta = (10 \text{ dB}) \log \frac{I}{I_0}
$$

- $\bullet\,$ Where I $_{\rm 0}$ = 10⁻¹² W/m² ¾Approximate hearing threshold at 1 kHz
- It's a log scale

7**≻A change of 10 dB corresponds to a factor of 10**

Standing sound waves

Recall standing waves on a string

- A standing wave on a string occurs when we have interference between wave and its reflection.
- The reflection occurs when the medium changes, e.g., at the string support.
- \bullet We can have sound standing waves too.
- •For example, in a pipe.
- •Two types of boundary conditions:
	- 1. Open pipe
	- 2. Closed pipe
- • In an closed pipe the boundary condition is that the displacement is zero at the end
	- \triangleright Because the fluid is constrained by the wall, it can't move!
- •In an open pipe the boundary condition is
that the **pressure fluctuation is zero** at the
end
	- 9 \triangleright Because the pressure is the same as outside the pipe (atmospheric)

Remember:

- • Displacement and pressure are out of phase by 90°.
- • When the displacement is 0, the pressure is $\pm p_{\text{max}}$.
- \bullet When the pressure is 0, the displacement is $\pm y_{\text{max}}$.
- \bullet So the nodes of the pressure and displacement waves are at different positions
	- ¾ **It is still the same wave, just two different ways to** (c) Pressure fluctuat: **describe it mathematically!!** Versus position x at $t = 0$

Wavelength λ

 $|v > 0|$

A

 $-p_{\text{max}}$

(a) Displacement y versus position x $y > 0$

10

 \circ \circ

More jargon: nodes and antinodes

• In a sound wave the pressure nodes are the displacement antinodes and viceversa

Example

- A directional loudspeaker bounces a sinusoidal sound wave off the wall. At what distance from the wall can you stand and hear no sound at all?
- A key thing to realize is that the ear is sensitive to pressure fluctuations
- Want to be at pressure node
- •The wall is a displacement node \rightarrow pressure antinode

Organ pipes

- Sound from standing waves in the pipe
- Remember:
	- **≻Closed pipe:**
		- Displacement node (no displacement possible) \rightarrow Pressure Antinode
	- ¾Open pipe:
		- Pressure node (pressure is atmospheric)

 \rightarrow Displacement Antinode

Closed Pipe

(displacement picture)

Organ pipe frequencies

• Open pipe:

Sample Problem

- A pipe is filled with air and produces a fundamental frequency of 300 Hz.
	- \triangleright If the pipe is filled with He, what fundamental frequency does it produce?
	- ¾ Does the answer depend on whether the pipe is open or stopped?

Closed (stopped) pipe: $f = n \cdot \frac{v}{4L}$ $(n = 1, 3, 5...)$ Open pipe: $f = n \cdot \frac{v}{2L}$ $(n = 1, 2, 3...)$

→ Fundamental frequency v/2L (open) or v/4L (stopped)

What happens when we substitute He for air?

The velocity of sound changes!

From last week, speed of sound:

$$
v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma RT}{M}}
$$
 Molar mass

 γ ~ 1.7 monoatomic molecules (He, Ar,..) γ ~ 1.4 diatomic molecules (O $_2$, N $_2,..)$ γ ~ 1.3 polyatomic molecules (CO $_{2}$,..)

Heat capacities at constant *P* or *V*

 $\gamma =$

$$
\rightarrow \quad v_{air} = \sqrt{\frac{\gamma_{air}}{\gamma_{He}}} \sqrt{\frac{M_{He}}{M_{air}}} \ v_{He}
$$

We had:

Closed (stopped) pipe: $f = n \cdot \frac{v}{4L}$ $(n = 1, 3, 5...)$ Open pipe: $f = n \cdot \frac{v}{2L}$ $(n = 1, 2, 3..)$

i.e., the fundamental frequency is proportional to velocity for both open and stopped pipes

$$
f_{He} = \frac{v_{He}}{v_{air}} f_{air}
$$

But: $v_{air} = \sqrt{\frac{\gamma_{air}}{\gamma_{He}}} \sqrt{\frac{M_{He}}{M_{air}}} v_{He}$
So: $f_{He} = \sqrt{\frac{\gamma_{He}}{\gamma_{air}}} \sqrt{\frac{M_{air}}{M_{He}}} f_{air}$
 $f_{He} = \sqrt{\frac{1.7}{1.4}} \sqrt{\frac{29 \text{ g/mol}}{4 \text{ g/mol}}} \text{ (300Hz)} = 890 \text{Hz}$

Resonance

• Many mechanical systems have natural frequencies at which they oscillate.

 \triangleright a mass on a spring: $\omega^2 = k/m$

 $\ge a$ pendulum: $\omega^2 = g/l$

 \triangleright a string fixed at both ends: f=nv/(2L)

- If they are driven by an external force with a frequency equal to the natural frequency, they go into resonance:
	- \triangleright the amplitude of the oscillation grows
	- \triangleright in the absence of friction, the amplitude would \rightarrow infinity

Interference

- Occur when two (or more) waves overlap.
- The resulting displacement is the sum of the displacements of the two (or more) waves.
	- ¾ Principle of superposition.
	- \triangleright We already applied this principle to standing waves:
		- Sum of a wave moving to the right and the reflected wave moving to the left.

Interference (cont.)

- The displacements of the two waves can add to give
	- \triangleright a bigger displacement.
		- Constructive Interference.
	- \triangleright or they can even cancel out and give zero displacement.
		- Destructive interference.
		- Sometime, sound + sound = silence
		- Or, light + light = darkness

Interference Example

• Two loudspeakers are driven by the same amplifier and emit sinusoidal waves in phase. The speed of sound is v=350 m/sec. What are the frequencies for (maximal) constructive and destructive interference.

- Wave from speaker A at P $(x_1=AP)$ $y_1(t) = A_1 \cos(\omega t - kx_1)$
- Wave from speaker B at P (x $_{2}$ =BP) $\mathsf{y}_2(\mathsf{t}) = \mathsf{A}_2 \cos(\omega \mathsf{t} - \mathsf{k} \mathsf{x}_2)$
- Total amplitude
	- $y(t) = y_1(t) + y_2(t)$
	- $y(t) = A_1 \cos \omega t \, \cos kx_1 + A_1 \, \sin \omega t \, \sin kx_1$
		- + A_2 cos ω t coskx $_2$ + A_2 sin ω t sinkx $_2$
- $\bullet\,$ When kx $_{1}$ = kx $_{2}$ + 2n π When kx₁ = kx₂ + 2n π the amplitude of the
resulting wave is largest.
	- \triangleright In this case coskx₁=coskx₂ and sinkx₁=sinkx₂.
- Conversely, when $kx_1 = kx_2 + n\pi$ Conversely, when kx₁ = kx₂ + n π (with n
odd), the amplitude of the resulting wave
is the smallest.

 \blacktriangleright Then coskx_1 = - coskx_2 and sinkx_1 = - sinkx_2 .

Destructive Interference $kx_1 = kx_2 + (2n + 1)\pi$ $\frac{2\pi}{\lambda}x_1 = \frac{2\pi}{\lambda}x_2 + (2n+1)\pi$ $x_1 - x_2 = \frac{2n+1}{2}\lambda$

- Constructive interference occurs when the difference in path length between the two waves is equal to an integer number of wavelengths.
- Destructive interference when the difference in path length is equal to a halfinteger number of wavelengths.
- CAREFUL: this applies if
	- \triangleright The two waves have the same wavelength.

 \triangleright The two waves are emitted in phase.

• What would happen if they were emitted (say) 180 $^{\rm o}$ out of phase?

The waves are generated in phase; v=350 m/sec

Constructive interference: AP-BP=nλ λ = v/f \rightarrow f = nv / (AB-BP) $f = n$ 350/0.35 Hz $f = 1, 2, 3, ...$ kHz Destructive interference: AP-BP=n λ/2 (n odd) λ = v/f \rightarrow f = nv / [2(AB-BP)] f = n 350/0.70 Hz $f = 0.5, 1.5, 2.5$ kHz

Beats

• Consider interference between two sinusoidal waves with similar, but not identical, frequencies:

- The resulting wave looks like a single sinusoidal wave with a varying amplitude between some maximum and zero.
- 27• The intensity variations are called <u>beats</u>, and the frequency with which these beats occur is called the beat frequency.

Beats, mathematical representation

- Consider two waves, equal amplitudes, different frequencies:
	- V_1 (x,t) = A cos(2πf₁t k₁x)

 V_2 (x,t) = A cos(2πf₂t – k₂x)

• Look at the total displacement at some point, say $x=0$.

 \triangleright y(0,t) = y₁(0,t) + y₂(0,t) = A cos(2 $\pi f_1 t$)+A cos(2 $\pi f_2 t$)

• Trig identity:

 $\angle \cos A + \cos B = 2 \cos[(A-B)/2] \cos[(A+B)/2]$

• This gives

 \triangleright y(0,t) = 2A cos[½ (2 π)(f₁-f₂)t] cos[½ (2 π)(f₁+f₂)t]

$y(0,t) = (2A \cos[1/2 (2\pi)(f_1-f_2)t]) (\cos[1/2 (2\pi)(f_1+f_2)t])$

An amplitude term which oscillates with frequency $\frac{1}{2}$ (f₁-f₂). If $\mathsf{f}_\mathsf{1}\approx \mathsf{f}_\mathsf{2}$ then $\mathsf{f}_\mathsf{1}\text{-}\mathsf{f}_\mathsf{2}$ is small and the amplitude varies slowly.

A sinusoidal wave term with frequency f= $\frac{1}{2}$ (f₁ + f₂).

Beat frequency is $\frac{1}{2}$ $|(\boldsymbol{\mathsf{f}}_1 - \boldsymbol{\mathsf{f}}_2)|$

Example problem

• While attempting to tune the note C at 523 Hz, a piano tuner hears 2 beats/sec.

(a) What are the possible frequencies of the string?

- (b) When she tightens the string a little, she hears 3
	- beats/sec. What is the frequency of the string now?
- (c) By what percentage should the tuner now change the tension in the string to "fix" it?

(a)
$$
f_{\text{beat}} = \frac{1}{2} |f_C - f_{\text{piano}}|
$$

\n $f_{\text{beat}} = 2 Hz$ and $f_C = 523 Hz$
\n $\rightarrow f_{\text{piano}} = 527$ or 519 Hz

(b) $f_{\text{beat}} = 3 \text{ Hz}$ \rightarrow $\rm{f_{piano}}$ = 529 or 517 Hz

31To decide which of the two, use the fact that the tension increased For string fixed at both end, we had f=nv/2L, i.e., f proportional to v. But v²=F/μ → higher F → higher v → higher f → f_{piano} = 529 Hz

(c) The frequency is $f_{piano} = 529$ Hz, we want $f_c = 523$ Hz. frequency is proportional to v (f=nv/2L) velocity is proportional to square root of tension ($v^2 = F/\mu$) \rightarrow frequency is proportional square root of tension

The tension must be changed (loosened) by 2.3%

Doppler Effect

- When a car goes past you, the pitch of the engine sound that you hear changes.
- Why is that?
- This must have something to do with the velocity of the cars with respect to you (towards you vs. away from you).

 \triangleright Unless it is because the driver is doing something "funny" like accelerating to try to run you over $\mathbb{G}% _{n}^{X}$

Consider listener moving towards sound sorce:

- \bullet Sound from source: velocity v, frequency $\mathsf{f}_{\rm s}$, wavelength λ , and v= λ $\mathsf{f}_{\rm s}$.
- \bullet The listener sees the wave crests approaching with velocity v+v $_{\mathsf{L}}.$
- Therefore the wave crests arrive at the listener with frequency:

$$
f_L = \frac{v + v_L}{v} f_S = (1 + \frac{v_L}{v}) f_S
$$

34 \rightarrow The listener "perceives" a different frequency (Dopple shift)

Now imagine that the source is also moving:

- The wave speed relative to the air is still the same (v).
- \bullet The time between emissions of subsequent crests is the period T=1/f $_{\textrm{s}}$.
- Consider the crests in the direction of motion of the source (to the right)
	- \triangleright A crest emitted at time t=0 will have travelled a distance vT at t=T
	- \triangleright In the same time, the source has travelled a distance v_sT .
	- \triangleright At t=T the subsequent crest is emitted, and this crest is at the source.
	- \triangleright So the distance between crests is vT-v_sT=(v-v_s)T.
	- \triangleright But the distance between crests is the wavelength

$$
\mathbf{\hat{v}} \lambda = (v-v_{\rm s})T
$$

35 \triangleright But T=1/f_s $\Rightarrow \lambda = (v-v_s)/f_s$ (in front of the source)

- \bullet λ = (v-v_s)/f_s (in front of the source)
- \bullet Clearly, behind the source $\lambda = (\mathsf{v}{+}\mathsf{v}_\mathsf{s})/\mathsf{f}_\mathsf{s}$
- • $\bullet\,$ For the listener, f $_{\sf L}$ =(v+v $_{\sf L})/\lambda$

 \triangleright Since he sees crests arriving with velocity v+v_L

$$
\to f_L = \frac{v + v_L}{v + v_S} f_S
$$

Sample problem

• A train passes a station at a speed of 40 m/sec. The train horn sounds with f=320 Hz. The speed of sound is v=340 m/sec.

What is the change in frequency detected by a person on the platform as the train goes by.

Approaching train:

In our case $v_1=0$ (the listener is at rest) and the source (train) is mowing towards rather than away from the listener. \rightarrow I must switch the sign of v_S

$$
f_L = \frac{v + v_L}{v + v_S} f_S
$$
 becomes
$$
f_{L1} = \frac{v}{v - v_{\text{train}}} f
$$

When the train moves away:

$$
V_{\text{train}}
$$

Clearly I need to switch the sign of v_{train} : $f_{L2} = \frac{v}{v + v_{\text{train}}} f$

$$
\Delta f = f_{L1} - f_{L2} =
$$
.. (algebra) .. = $-2 \frac{v v_{\text{train}}}{v^2 - v_{\text{train}}^2} f = 76$ Hz