Fall 2004 Physics 3 Tu-Th Section

> Claudio Campagnari Lecture 3: 30 Sep. 2004

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Sound

• Sound = longitudinal wave in a medium.

- The medium can be anything:
 - a gas, e.g., air
 - a liquid, e.g., water
 - even a solid, e.g., the walls
- The human hear is "sensitive" to frequency range ~ 20-20,000 Hz
 - "audible range"
 - higher frequency: "ultrasounds"
 - lower frequency: "infrasound"

How do we describe such a wave?

e.g., sinusoidal wave, traveling to the right

- idealized one dimensional transmission, like a sound wave within a pipe.

Mathematically, just like <u>transverse</u> wave on string: $y(x,t) = A \cos(kx-\omega t)$

But the meaning of this equation is quite different for a wave on a string and a sound wave!!

- "x" = the direction of propagation of the wave
- "y(x,t)" for string is the displacement at time t of the piece of string at coordinate x <u>perpendicular</u> to the direction of propagation.
- "y(x,t)" for sound is the displacement at time t of a piece of fluid at coordinate x <u>parallel</u> to the direction of propagation.
- "A" is the amplitude, i.e., the <u>maximum</u> value of displacement.

- It is more convenient to describe a sound wave not in term of the <u>displacement</u> of the particles in the fluid, but rather in terms of the <u>pressure</u> in the fluid.
- Displacement and pressure are clearly related:

- In a sound wave the pressure fluctuates around the equilibrium value.
 - For air, this would normally be the atmospheric pressure.
 - $-p_{absolute}(x,t) = p_{atmospheric} + p(x,t)$
- Let's relate the fluctuating pressure p(x,t) to the displacement defined before.

$$y_1 = y(x, t) \quad y_2 = y(x + \Delta x, t)$$

 $\Delta V = change in volume of cylinder:$ $\Delta V = S \cdot (y_2 - y_1) = S \cdot [y(x + \Delta x, t) - y(x, t)]$ Original volume:

$$\mathsf{V}=\mathsf{S}\cdot\Delta\mathsf{x}$$

Fractional volume change:

$$\frac{\Delta V}{V} = \frac{S \cdot [y(x + \Delta x, t) - y(x, t)]}{S \cdot \Delta x}$$

$$\sum_{\substack{y_1 = y(x, t) \\ y_2 = y(x + \Delta x, t) \\ S \\ S \\ \leftarrow \Delta x \rightarrow 1}} \Delta x + \Delta x, t) \qquad \Delta V = \\ V = \\ S \cdot [y(x + \Delta x, t) - y(x, t)] \\ S \cdot \Delta x$$

Now make Δx infinitesimally small

– Take limit $\Delta x \rightarrow 0$

 $- \Delta V$ becomes dV

$$\frac{dV}{V} = \lim_{\Delta x \to 0} \frac{S \cdot [y(x + \Delta x, t) - y(x, t)]}{S \cdot \Delta x} = \frac{\partial y}{\partial x}$$

Bulk modulus: *B* (chapter 11) $B = \frac{-p}{dV/V}$

$$p(x,t) = -B \frac{\partial y(x,t)}{\partial x}$$

 $p(x,t) = -B \frac{\partial y(x,t)}{\partial x}$

- This is the equation that relates the <u>displacement</u> of the particles in the fluid (y) to the <u>fluctuation in pressure</u> (p).
- They are related through the bulk modulus (B)

Displacement (y) and pressure (p) oscillations are 90° out of phase ¹¹

Example
"Typical" sinusoidal sound wave,
maximum pressure fluctuation
$$3 \times 10^{-2}$$
 Pa.
- Compare $p_{atmospheric} = 1 \times 10^{5}$ Pa
• Find maximum displacement at f=1 kHz
given that B=1.4 10^{5} Pa, v=344 m/sec
 $y(x,t) = (A \cos(kx - \omega t))$
 $p(x,t) = (A \cdot B \cdot k) \sin(kx - \omega t)$

 $y(x,t) = A\cos(kx - \omega t)$ $p(x,t) = (A \cdot B \cdot k) \sin(kx - \omega t)$ $y_{max} = A$ and $p_{max} = A \cdot B \cdot k = y_{max} \cdot B \cdot k$ $\rightarrow y_{max} = \frac{p_{max}}{R \cdot k}$ We have p_{max} (= 3 × 10⁻² Pa) and *B* (= 1.4 × 10⁵ Pa) But what about *k*? We have f and $v \rightarrow \lambda = v/f$ And $k = 2\pi/\lambda$ \rightarrow k = $2\pi/(v/f) = 2\pi f/v$ $y_{max} = \frac{p_{max}}{B \cdot k} = \frac{p_{max} \cdot v}{2 \cdot \pi \cdot B \cdot f}$ Now it is just a matter of plugging in numbers:

$$y_{max} = \frac{p_{max}}{B \cdot k} = \frac{p_{max} \cdot v}{2 \cdot \pi \cdot B \cdot f}$$
$$y_{max} = \frac{(3 \cdot 10^{-2} \text{ Pa})(344 \text{ m/sec})}{2 \cdot \pi \cdot (1.4 \cdot 10^5 \text{ Pa}) \cdot (10^3 \text{ sec}^{-1})}$$
$$y_{max} = 1.2 \times 10^{-8} \text{ m} \text{ TINY!!!}$$

Aside: Bulk Modulus, Ideal Gas $B = \frac{-p}{dV/V} = -V\frac{P}{dV}$

Careful: *P* here is not the pressure, but its deviation from equilibrium, e.g., the additional pressure that is applied to a volume of gas originally at atmospheric pressure.

Better notation $P \rightarrow dP$

$$B = -V\frac{dP}{dV}$$

$B = \gamma P \approx 1.4 \cdot P$ for air

Note: the bulk modulus increases with pressure.

If we increase the pressure of a gas, it becomes harder to compress it further, i.e. the bulk modulus increases (makes intuitive sense)

Speed of sound

- At t=0 push the piston in with constant v_y This triggers wave motion in fluid
- At time t, piston has moved distance v_vt
- If v is the speed of propagation of the wave,
 i.e. the speed of sound, fluid particles up
 to distance vt are in motion
- Mass of fluid in motion M=pAvt
- Speed of fluid in motion is v_v
- Momentum of fluid in motion is $Mv_y = \rho Avtv_y$

 - ΔP is the change in pressure in the region where fluid is moving

$$B = -V \frac{\Delta P}{\Delta V}$$

- V = Avt and
$$\Delta V$$
 = -Av_yt

$$\rightarrow \Delta P = B \frac{v_y}{v}$$

Net force on fluid is $F = (p+\Delta p) \cdot A - p \cdot A = \Delta p \cdot A$

This force has been applied for time t: Impulse = $F \cdot t = \Delta p \cdot A \cdot t$ Impulse = $B \cdot \frac{v_y}{v} \cdot A \cdot t$

Impulse = change in momentum

Initial momentum = 0 Final momentum = $\rho Avtv_y$ $\rho \cdot A \cdot v \cdot t \cdot v_y = B \cdot \frac{v_y}{v} \cdot A \cdot t$ $\rightarrow v = \sqrt{\frac{B}{\rho}}$ 19 Speed of sound: $v = \sqrt{\frac{B}{\rho}}$ Speed of waves on a string: $v = \sqrt{\frac{F}{\mu}}$

B and *F* quantify the restoring "force" to equilibrium.

 ρ and μ are a measure of the "inertia" of the system.

Speed of sound:
$$v = \sqrt{\frac{B}{\rho}}$$

R = gas constant
R ~ 8.3 J/mol K
Bulk modulus: $B = \gamma P$
One mole of ideal gas: $PV = RT$
 $\rightarrow B = \gamma \frac{RT}{V} \rightarrow v = \sqrt{\frac{\gamma RT}{V\rho}}$
Since ρV = mass per mole = M:
 $v = \sqrt{\frac{\gamma RT}{M}}$

A function of the gas and the temperature

For air:

 $-\gamma = 1.4$ -M = 28.95 g/mol $\rightarrow v = 20 \text{ m/sec } \sqrt{T}$ At $T = 20^{\circ}C = 293^{\circ}K$: v = 343 m/sec = 769 mphHe: 1000 m/sec H₂: 1330 m/sec

Intensity

- The wave carries energy
- The intensity is the <u>time average</u> of the power carried by the wave crossing unit area.
- Intensity is measured in W/m²

Intensity (cont.) Sinusoidal sound wave: $y(x,t) = A\cos(kx - \omega t)$ $p(x,t) = B \cdot k \cdot A \sin(kx - \omega t)$ Particle velocity Power = Force \times velocity NOT wave velocity Intensity = <Power>/Area = <Force × velocity>/Area = < Pressure \times velocity> $I = \langle p(x,t) \cdot v_y(x,t) \rangle = \langle p(x,t) \cdot \frac{\partial y}{\partial t} \rangle$ $I = \langle [B \cdot k \cdot A \sin(kx - \omega t)] [\omega A \sin(kx - \omega t)] \rangle$ $I = B \cdot \omega \cdot k \cdot A^2 < \sin^2(kx - \omega t) > 24$

Intensity (cont.)

$$I = B \cdot \omega \cdot k \cdot A^{2} \quad (\sin^{2}(kx - \omega t))$$

$$I = \frac{1}{2} \cdot B \cdot \omega \cdot k \cdot A^{2}$$
Now use $\omega = vk$ and $v^{2}=B/\rho$:

$$I = \frac{1}{2}\sqrt{\rho B}\omega^{2}A^{2}$$
Or in terms of $p_{max} = BkA$:

$$I = \frac{\omega p_{max}^{2}}{2Bk} = \frac{v p_{max}^{2}}{2B}$$
And using $v^{2}=B/\rho$:

$$I = \frac{p_{max}^{2}}{2v\rho} = \frac{p_{max}^{2}}{2\sqrt{\rho B}} _{25}$$

Decibel

- A more convenient sound intensity scale
 more convenient than W/m².
- The sound intensity level β is defined as

$$\beta = (10 \text{ dB}) \log \frac{I}{I_0}$$

• Where $I_0 = 10^{-12} \text{ W/m}^2$

- Approximate hearing threshold at 1 kHz

• It's a log scale

– A change of 10 dB corresponds to a factor of 10 $_{26}^{10}$

Source or Description of Sound	Sound Intensity Level, β (dB)	Intensity, I (W/m ²)
Military jet aircraft 30 m away	140	10 ²
Threshold of pain	120	1
Riveter	95	3.2×10^{-3}
Elevated train	90	10^{-3}
Busy street traffic	70	10^{-5}
Ordinary conversation	65	3.2×10^{-6}
Quiet automobile	50	10^{-7}
Quiet radio in home	40	10^{-8}
Average whisper	20	10^{-10}
Rustle of leaves	10	10^{-11}
Threshold of hearing at 1000 Hz	0	10^{-12}

Table 16.2 Sound Intensity Levels from Various Sources (Representative Values)

Example

- Consider a sound source.
- Consider two listeners, one of which twice as far away as the other one.
- What is the difference (in decibel) in the sound intensity perceived by the two listeners?

- To answer the question we need to know something about the <u>directionality</u> of the emitted sound.
- Assume that the sound is emitted uniformly in all directions.

- How does the intensity change with r (distance from the source)?
- The key principle to apply is <u>conservation of energy</u>.
- The <u>total</u> energy per unit time crossing a spherical surface at r₁ must equal the total energy crossing a spherical surface at r₂
- Surface area of sphere of radius r: $4\pi r^2$.
- Intensity = Energy/unit time/unit area.
- $4\pi r_1^2 I_1 = 4\pi r_2^2 I_2$.

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$

The original question was: change in decibels when second "listener" is twice as far away as first one.

 $r_2 = 2r_1$ $I_1/I_2 = 4$ Definition of decibel : $\beta = (10 \text{ dB}) \log \frac{I}{I_0}$ $\beta_2 - \beta_1 = (10 \text{dB})(\log \frac{I_2}{I_0} - \log \frac{I_1}{I_0})$ $\beta_2 - \beta_1 = (10 \text{dB})(\log I_2 - \log I_0 - \log I_1 + \log I_0)$ $\beta_2 - \beta_1 = (10 \text{dB})(\log I_2 - \log I_1) = (10 \text{dB})\log \frac{I_2}{I_1}$ $\beta_2 - \beta_1 = (10 \text{dB}) \log \frac{1}{4} = -6.0 \text{ dB}$ 31

Standing sound waves

Recall standing waves on a string

- A standing wave on a string occurs when we have interference between wave and its reflection.
- The reflection occurs when the medium changes, e.g., at the string support.

- We can have sound standing waves too.
- For example, in a pipe.
- Two types of <u>boundary conditions:</u>
 - 1. Open pipe
 - 2. Closed pipe

- Because the fluid is constrained by the wall, it can't move!
- In an open pipe the boundary condition is that the pressure fluctuation is zero at the end
 - Because the pressure is the same as outside the pipe (atmospheric)

Remember:

- Displacement and pressure are out of phase by 90°.
- When the displacement is 0, the pressure is ± p_{max}.
- When the pressure is 0, the displacement is ± y_{max}.
- So the nodes of the pressure and displacement waves are at different positions
 - It is still the same wave, just two different ways to (c) Pressure fluctuation p describe it mathematically!!versus position x

More jargon: nodes and antinodes

• In a sound wave the pressure nodes are the displacement antinodes and viceversa

Example

- A directional loudspeaker bounces a sinusoidal sound wave of the wall. At what distance from the wall can you stand and hear no sound at all?
- A key thing to realize is that the ear is sensitive to pressure fluctuations
- Want to be at pressure node
- The wall is a displacement node \rightarrow pressure antinode

