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Last Time

 What is a wave?
— A "disturbance" that moves through space.
— Mechanical waves through a medium.

 Transverse vs. Longitudinal
—e.g., string vs. sound

e Sinusoidal
— each particle in the medium undergoes SHM.
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Last Time (cont.)

 Wave function y(Xx,t)

— displacement (y) as a function of position along
the direction of propagation (x) and time (t).

"ANNNNS
AVAVAVAVAVA

 \Wave moves with velocity v in +ve x-direction

— y(X-Vvt)
— Do not confuse velocity of wave with velocity Qf
particle in the medium!!
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o Attime t, an element of the string (P) at some x has the
same y position as an element located at x-vt at t=0 (Q).

o y(X,t)=y(x-vt,0)=y(x-vt)



Last time (cont.)
Sinusoidal Wave: JAVAVAVAVAVA
y(z,t) = AcCoOs 27'”(56 — vt)]
= Acos|w(; —1)]
= A cos(kx — wt)
Wave number: k = 2%

W
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Wave Equation:
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Energy Considerations

e WWaves carry energy.
* Think of a pulse on a string.

o
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 Energy Is transferred from hand to string.
* Kinetic energy moves down the string.




Consider an element
of a string in motion (left to right):

Slope = _x_ a

It moves (accelerates) because each piece of the
medium exerts a force on its neighboring piece.
What is the force on "a" ?

o 1
Fy(z,t) = —FOUZl)

What is the power?

Oy (x,t) Oyt
P(x,t) = Fy(x,)vy(z,t) = —F yégﬁ; ) y(%;: )



This is the rate at which work is being done
(P=W/t), and the rate at which energy travels
down the string.

For sinusoidal wave y(x,t) = Acos(kx — wt)

8%2 t) — _kA sin(kx — wt)

aygl;’t) = wAsin(kx — wt)

P(z,t) = FkwA2sin2(kz —wt) > 0O
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P(z,t) = FkwA?sin?(kx — wt)

2 F mass

Then w =wvk and v (Ry—Tengt

P(x,t) :/@Q(ka: — wt)

Property Property
of the string of the wave

This Iis a general property of mechanical waves:

1. Power proportional to square of amplitiude
2. Power proportional to square of frequency



P(z,t) = vuFw?2A?sin?(kz — wt)
Maximum value of power: Pr,qr = quQAQ

Average value of power P, — % MFwQAQ

Since average of sin? is 1/2

Wave power
p versus time t
at coordinate x = 0
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Wave reflection

e \When a wave encounters an "obstacle",
1.e., a "change in the medium" something
happens.

e For example:
— a sound wave hitting a wall is "reflected"

— a light wave originally traveling in air when it
reaches the surface of a lake is partially
"reflected" and partially "transmitted".
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Wave reflection, string

Imaqgine that one end of the string Is held fixed:
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(a) Fixed end
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Why Is the reflected pulse inverted?

‘ -
(1) |Retlecting pulse

r Arriving pulse is inverted

L ) F

» . 3)
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(4  (a) Fixed end

(3)

(6)

(7)

Pulse was Iinitially created with
upward and then downward force
on end of string.

When pulse arrives at fixed end,
string exerts upward force on
support.

The end of the string does not move
(it is fixed!).

By Newton's 34 law, support exerts
downward force on string.

 When the top of the pulse arrives, the string exerts a
downward force on support.

« Newton's 3" law - support exerts upward force on string.

e Support-to-string force: downward then upward.
— Opposite order as pulse creation (was upward then downward).

> Reflected pulse Is inverted
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(a) Fixed end

 In this (idealized) situation
the reflected wave has the
same amplitude
(magnitude) and velocity
(magnitude) as the
Incoming wave.

 No energy is lost in the
reflection.
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Now imagine that one end of the string Is free:
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Why Is the reflected pulse not inverted?

- e Pulse was initially created with
il i  Ratlaciiag vl upward and then downward force

Arriving pulse

(5) 18 not inverted on the far end of the string.

-  When pulse first arrives at free
2) ' l g end, there is an upward force on
(6}

_ the end of the string.

< * When the top of the pulse arrives,

(3) l . the direction of the force becomes
N downward.

I —> upward and then downward force

(4) on the free end of the string

 Forces on free end like at far end where the pulse was 15t generated.

- NoO Inversion on reflection
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Boundary Conditions

* The properties ("conditions") at the end of
the string (or more generally where the

medium changes) are called "boundary
conditions".

e This Is jargon, but it Is used in many
places in physics, so try to remember what
It means.
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Interference
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* |magine that the incoming pulse
IS long.

 Near the boundary at some
point we will have a "meeting"”

of the incoming pulse and the
reflected pulse.

* The deflection of the string will
be the sum of the two pulses.
(principle of superposition)




Principle of Superposition

 When two (or more) waves overlap, the
actual displacement at any point is the
sum of the individual displacements.

y(a;,ﬁ) = y1(=z,t) + yo(x,t)
4 }

Total displacement First wave Second wave

e Consequence of the fact that wave
equation is linear in the derivatives.
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Standing Waves

P
S

Consider a sinusoidal wave traveling to the left:
y1(x,t) = —Acos(kx + wt)

String held fixed at x=0 - reflected wave:
yo>(x,t) = +Acos(kx — wt + 9)

— kx+ot = kx-ot because reflected wave travels to the right.

— what about 67
 Must choose it to match the boundary conditions!
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 Boundary condition: string is fixed at x=0
 Mathematically y(x=0,t) = 0 at all times t
y(z,t) = y1(x,t) + yo(x,t)
y(x,t) = —Acos(kxr + wt) + Acos(kx — wt + 9)
y(x = 0,t) = —Acos(wt) + Acos(—wt + 9)
y(x = 0,t) = —Acos(wt) + Acos(wt — 0)
e But y(x=0,t)=0:
— 0= —Acos(wt) + Acos(wt — 9)
—0 =20
y(x,t) = —Acos(kx + wt) + Acos(kx — wt)
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y(x,t) = —Acos(kx + wt) + Acos(kx — wt)

cos(kx + wt) = cos kx coswt — Sin kx sin wt
cos(kx — wt) = cos kx coswt + sin kx sin wt

y(x,t) = (2-A-sinkx)sinwt

kX#2n
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e Imagine that string is held at both ends.
* L=length of the string
 Nodes at x=0 and x=L

y(x,t) = A-sinkx -sSinwt

kL = nm

2L
n

— A\ =

* Only standing waves of very definite
wavelengths (and frequencies) are allowed

v=fA — f=35=ns7
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Normal Modes
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Second harmonic, f,
First overtone

Third harmonic, f;
Second overtone

Fourth harmonic, f,
Third overtone
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 If you could displace a string in a shape
corresponding to one of the normal
modes, then the string would vibrate at the
frequency of the normal mode

— Surrounding air would be displaced at the
same frequency producing a pure sinusoidal
sound wave of the same frequency.

 |In practice when you pluck a guitar string
you do not excite a single normal mode.

— Because you do not displace the string in a
perfectly sinusoidal way
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* The displacement of the string can be represented as
a sum over the normal modes (Fourier series).

y, (x,0) = Asin kjx
P

yz(x,(Q = (A/2~2) sin 2k;x

¥5(x,0) = (A/9) sin 3k x

(x,0)

actua]

y(x,0) = y,(x,0) + y,(x,0) + y;(x,0)

N adding an infinite numbers of terms N 26
you can get the exact shape



How to control the frequency of
the normal modes

n F

— U — N
f=nap =51 7

e Longer strings = lower frequencies.
— Cello vs violin

* Higher tension (F) = higher frequencies.
 More messive strings = lower frequencies.
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