Fall 2004 Physics 3 Tu-Th Section

> Claudio Campagnari Lecture 2: 28 Sep. 2004

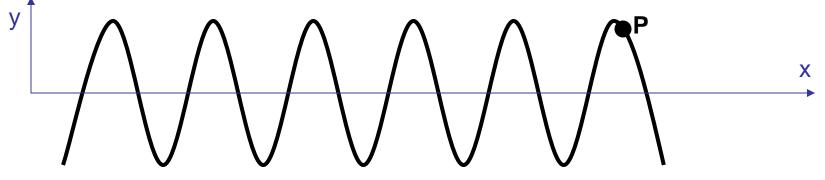
Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

## Last Time

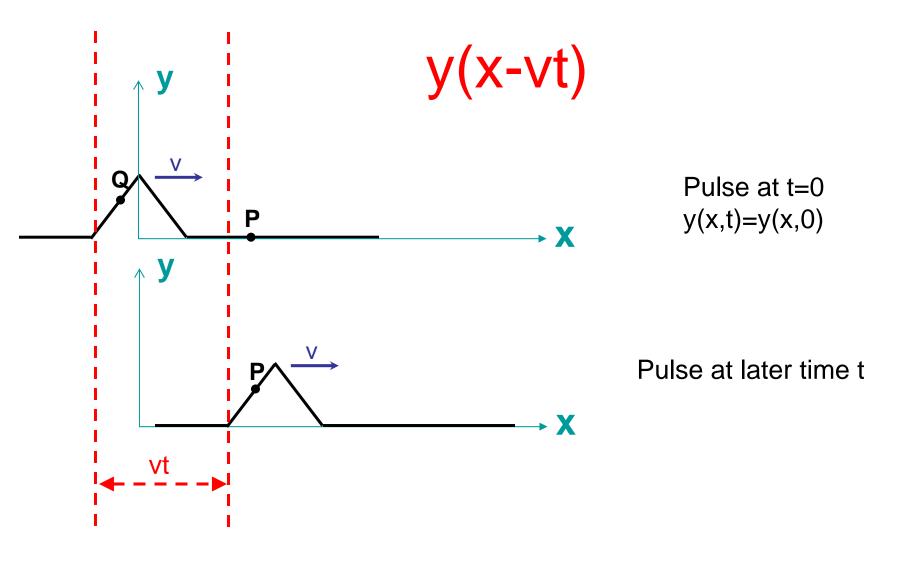
- What is a wave?
  - A "disturbance" that moves through space.
  - Mechanical waves through a medium.
- Transverse vs. Longitudinal
  - -e.g., string vs. sound
- Sinusoidal
  - each particle in the medium undergoes SHM.  $\bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge$

# Last Time (cont.)

- Wave function y(x,t)
  - displacement (y) as a function of position along the direction of propagation (x) and time (t).



- Wave moves with velocity v in +ve x-direction -y(x-vt)
  - Do not confuse velocity of wave with velocity of particle in the medium!!



- At time t, an element of the string (P) at some x has the same y position as an element located at x-vt at t=0 (Q).
- y(x,t)=y(x-vt,0)=y(x-vt)

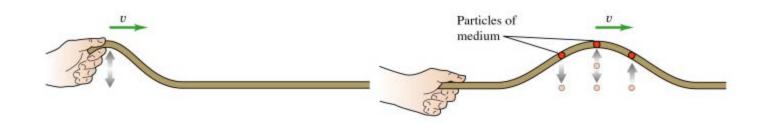
Last time (cont.) Sinusoidal Wave:  $y(x,t) = A \cos[\frac{2\pi}{\lambda}(x-vt)]$  $= A \cos[\omega(\frac{x}{v} - t)]$  $= A\cos(kx - wt)$ Wave number:  $k = \frac{2\pi}{\omega}$  $\lambda = \frac{2\pi}{k}, f = \frac{\omega}{2\pi}, v = \lambda f$ 

Wave Equation:

$$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$$

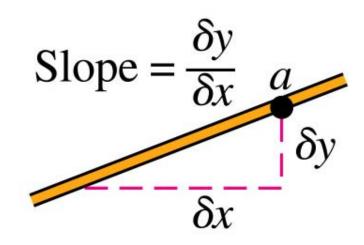
# **Energy Considerations**

- Waves carry energy.
- Think of a pulse on a string.



- Energy is transferred from hand to string.
- Kinetic energy moves down the string.





It moves (accelerates) because each piece of the medium exerts a force on its neighboring piece. What is the force on "a" ?

$$F_{x} = F_{y} + F_{y}(x,t) = -F \frac{\partial y(x,t)}{\partial x}$$

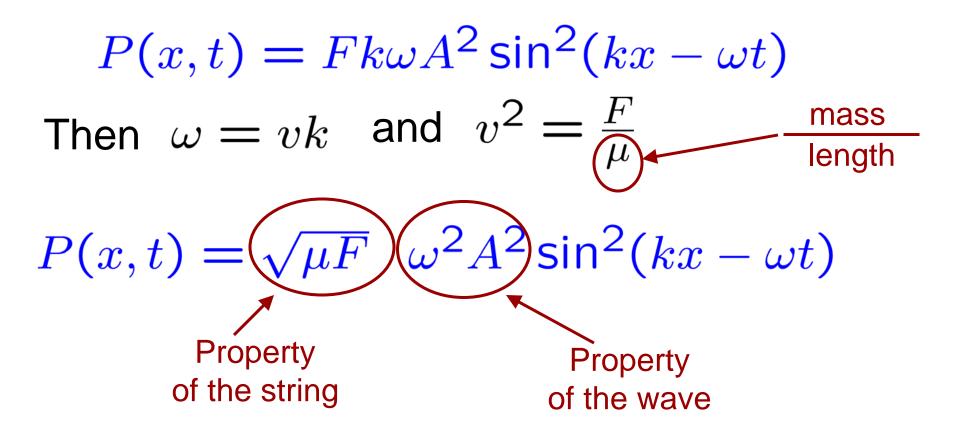
What is the power?

 $P(x,t) = F_y(x,t)v_y(x,t) = -F\frac{\partial y(x,t)}{\partial x}\frac{\partial y(x,t)}{\partial t}$ 

## Power: $P(x,t) = F_y(x,t)v_y(x,t) = -F\frac{\partial y(x,t)}{\partial x}\frac{\partial y(x,t)}{\partial t}$

This is the rate at which work is being done (P=W/t), and the rate at which energy travels down the string.

For sinusoidal wave  $y(x,t) = A\cos(kx - \omega t)$  $\frac{\partial y(x,t)}{\partial x} = -kA\sin(kx - \omega t)$   $\frac{\partial y(x,t)}{\partial t} = \omega A\sin(kx - \omega t)$   $P(x,t) = Fk\omega A^2 \sin^2(kx - \omega t) > 0$ 



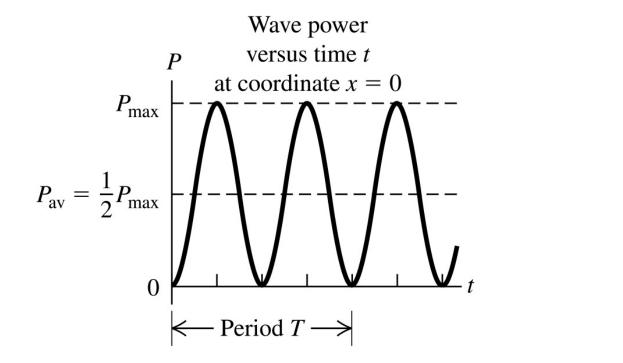
This is a general property of mechanical waves: 1. Power proportional to square of amplitiude 2. Power proportional to square of frequency

$$P(x,t) = \sqrt{\mu F} \omega^2 A^2 \sin^2(kx - \omega t)$$

Maximum value of power:  $P_{max} = \sqrt{\mu F} \omega^2 A^2$ 

Average value of power  $P_{av} = \frac{1}{2}\sqrt{\mu F}\omega^2 A^2$ 

Since average of  $\sin^2$  is 1/2



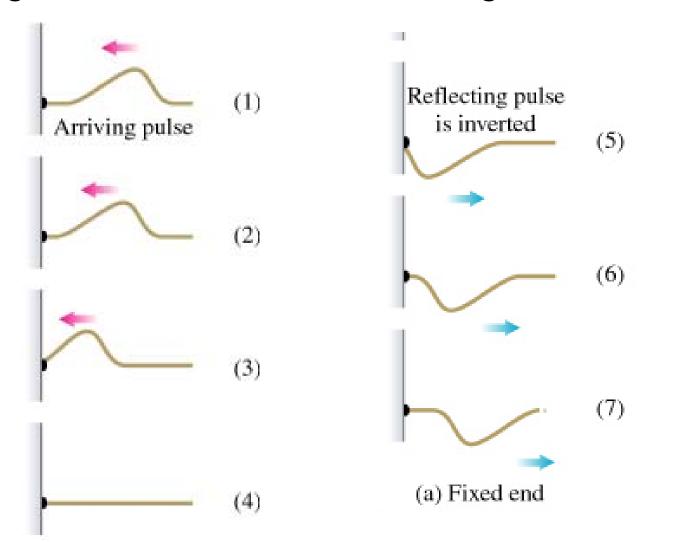
10

## Wave reflection

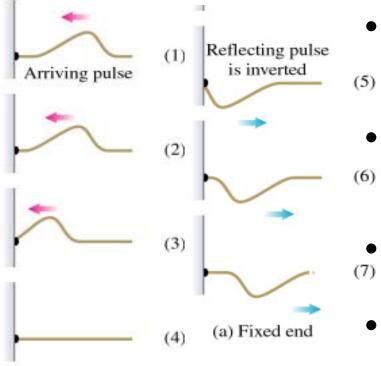
- When a wave encounters an "obstacle", .i.e., a <u>"change in the medium"</u> something happens.
- For example:
  - a sound wave hitting a wall is "reflected"
  - a light wave originally traveling in air when it reaches the surface of a lake is partially "reflected" and partially "transmitted".

## Wave reflection, string

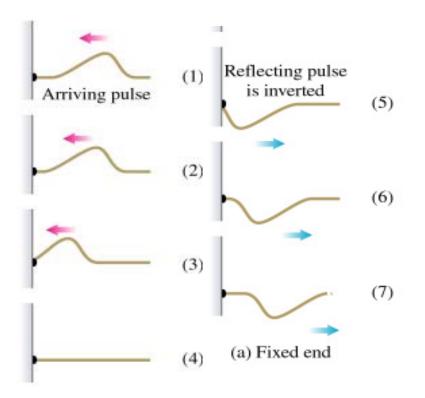
Imagine that one end of the string is held fixed:



## Why is the reflected pulse inverted?

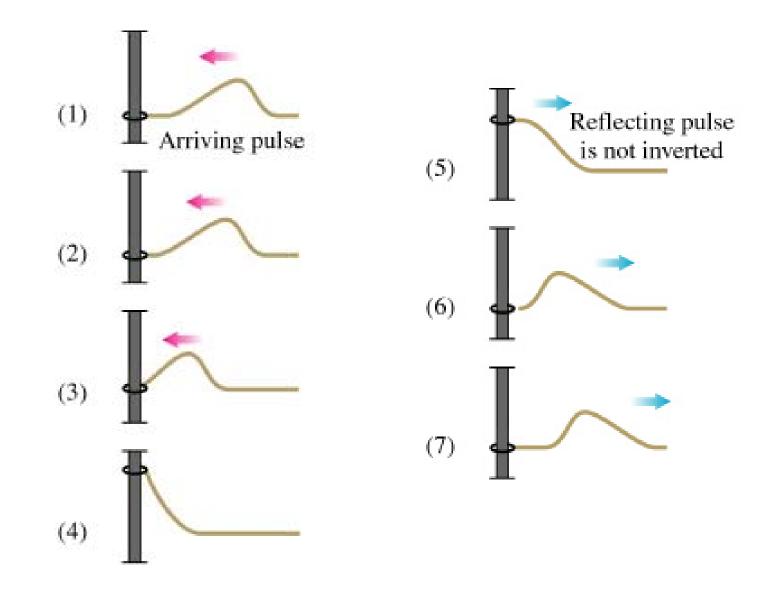


- Pulse was initially created with <u>upward</u> and then <u>downward</u> force on end of string.
  - When pulse arrives at fixed end,
  - string exerts <u>upward</u> force on support.
  - The end of the string does not move (it is fixed!).
  - By Newton's 3<sup>rd</sup> law, support exerts <u>downward</u> force on string.
- When the top of the pulse arrives, the string exerts a <u>downward</u> force on support.
- Newton's  $3^{rd}$  law  $\rightarrow$  support exerts <u>upward</u> force on string.
- Support-to-string force: <u>downward</u> then <u>upward</u>.
  - Opposite order as pulse creation (was upward then downward).
  - > Reflected pulse is inverted

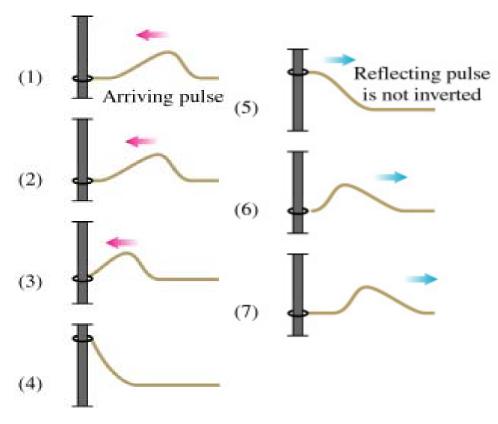


- In this (idealized) situation the reflected wave has the same amplitude (magnitude) and velocity (magnitude) as the incoming wave.
- No energy is lost in the reflection.

#### Now imagine that one end of the string is free:



### Why is the reflected pulse not inverted?

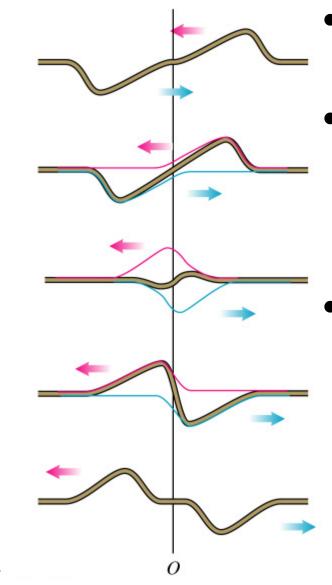


- Pulse was initially created with <u>upward</u> and then <u>downward</u> force on the far end of the string.
- When pulse first arrives at free end, there is an <u>upward</u> force on the end of the string.
- When the top of the pulse arrives, the direction of the force becomes <u>downward</u>.
- → <u>upward</u> and then <u>downward</u> force on the free end of the string
- Forces on free end like at far end where the pulse was 1<sup>st</sup> generated.
  No inversion on reflection

## **Boundary Conditions**

- The properties ("conditions") at the end of the string (or more generally where the medium changes) are called <u>"boundary</u> <u>conditions".</u>
- This is jargon, but it is used in many places in physics, so try to remember what it means.

## Interference



- Imagine that the incoming pulse is long.
- Near the boundary at some point we will have a "meeting" of the incoming pulse and the reflected pulse.
- The deflection of the string will be the sum of the two pulses. (principle of superposition)

18

## **Principle of Superposition**

• When two (or more) waves overlap, the actual displacement at any point is the sum of the individual displacements.

• Consequence of the fact that wave equation is linear in the derivatives.

Т

# Standing Waves

Consider a sinusoidal wave traveling to the left:

$$y_1(x,t) = -A\cos(kx + \omega t)$$

String held fixed at x=0  $\rightarrow$  reflected wave:

$$y_2(x,t) = +A\cos(kx - \omega t + \delta)$$

- kx+ $\omega$ t  $\rightarrow$  kx- $\omega$ t because reflected wave travels to the right.

- what about  $\delta$ ?
  - Must choose it to match the boundary conditions!

- Boundary condition: string is fixed at x=0
- Mathematically y(x=0,t) = 0 at all times t

 $y(x,t) = y_1(x,t) + y_2(x,t)$   $y(x,t) = -A\cos(kx + \omega t) + A\cos(kx - \omega t + \delta)$   $y(x = 0,t) = -A\cos(\omega t) + A\cos(-\omega t + \delta)$  $y(x = 0,t) = -A\cos(\omega t) + A\cos(\omega t - \delta)$ 

• But y(x=0,t)=0:

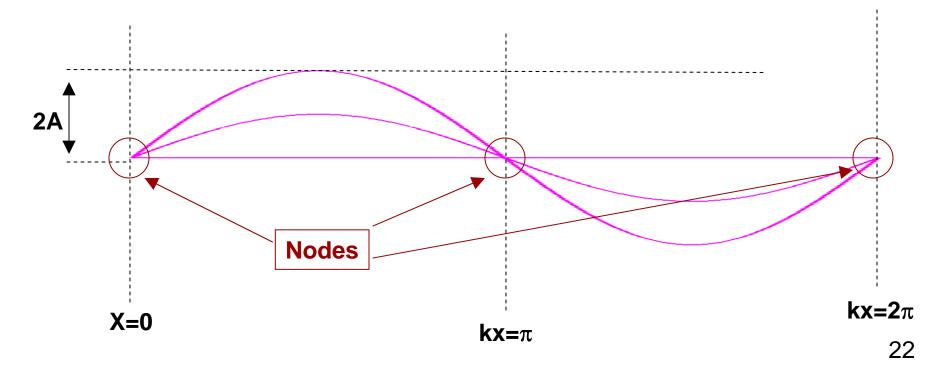
 $\rightarrow 0 = -A\cos(\omega t) + A\cos(\omega t - \delta)$  $\rightarrow \delta = 0$ 

 $y(x,t) = -A\cos(kx + \omega t) + A\cos(kx - \omega t)$ 

 $y(x,t) = -A\cos(kx + \omega t) + A\cos(kx - \omega t)$ 

 $\cos(kx + \omega t) = \cos kx \cos \omega t - \sin kx \sin \omega t$  $\cos(kx - \omega t) = \cos kx \cos \omega t + \sin kx \sin \omega t$ 

 $y(x,t) = (2 \cdot A \cdot \sin kx) \sin \omega t$ 



- Imagine that string is held at both ends.
- L=length of the string
- Nodes at x=0 and x=L

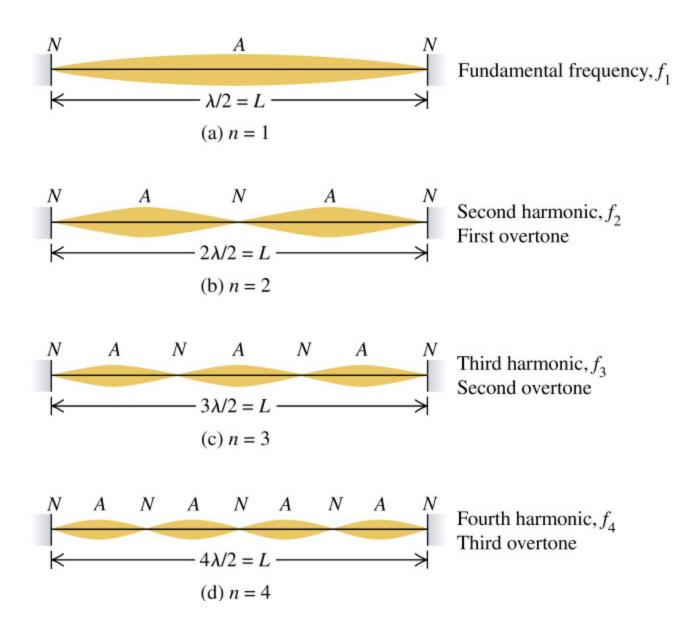
 $\rightarrow \lambda = \frac{2L}{n}$ 

 $y(x,t) = A \cdot \sin kx \cdot \sin \omega t$ 

$$kL = n\pi$$
 But  $k = \frac{2\pi}{\lambda}$ 

$$v = f\lambda \quad \rightarrow \quad f = \frac{v}{\lambda} = n\frac{v}{2L}$$

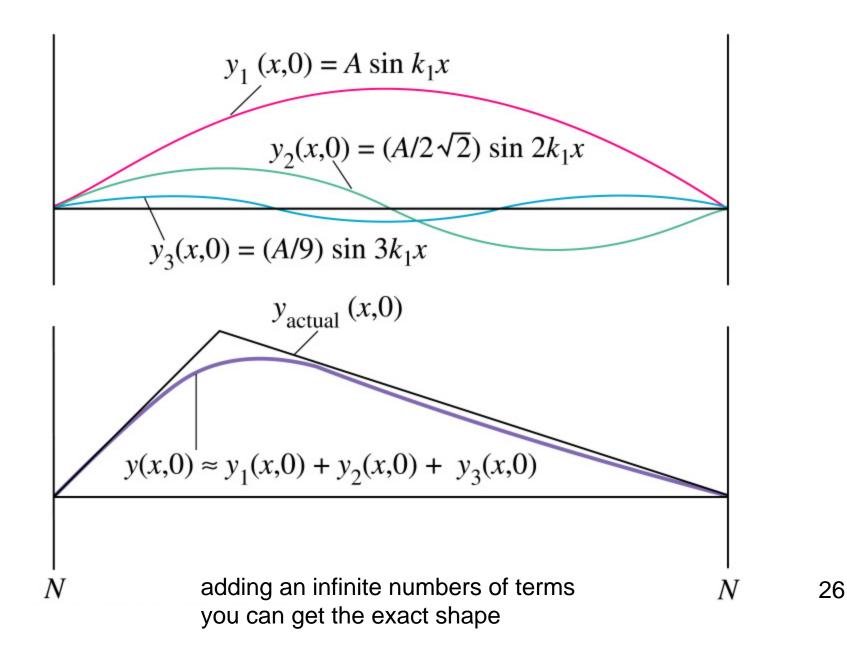
## **Normal Modes**



24

- If you could displace a string in a shape corresponding to one of the normal modes, then the string would vibrate at the frequency of the normal mode
  - Surrounding air would be displaced at the same frequency producing a pure sinusoidal sound wave of the same frequency.
- In practice when you pluck a guitar string you do not excite a single normal mode.
  - Because you do not displace the string in a perfectly sinusoidal way

• The displacement of the string can be represented as a sum over the normal modes (Fourier series).



How to control the frequency of the normal modes

$$f = n \frac{v}{2L} = \frac{n}{2L} \cdot \sqrt{\frac{F}{\mu}}$$

- Longer strings → lower frequencies.
   Cello vs violin
- Higher tension (F)  $\rightarrow$  higher frequencies.
- More messive strings  $\rightarrow$  lower frequencies.