Fall 2004 Physics 3 Tu-Th Section

Claudio Campagnari Lecture 16: 22 Nov. 2004

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Resistor in parallel or in series

• In parallel:

- In series R_1 R_{2} a b
- In both cases these pieces of a circuit can be thought of as "equivalent" to a single resistor a b

2 \triangleright Equivalent means that for a given V_{ab} the total current flowing would be the same as if it was a single resistor of resistance R_{ea} , i.e., $I=V_{ab}/R$ R_{eq}

- The current flowing through the two resistors is the same
- The voltage drops are

 $\triangleright \bigvee_{ac}$ = I R₁ and V_{cb} = I R₂ $\triangleright \bigvee_{ab} = V_{a} - V_{b} = V_{a} - V_{c} + V_{c} - V_{b} = V_{ac} + V_{cb}$ $V_{ab} = IR_1 + IR_2 = I (R_1 + R_2)$

• Same as the current flowing through equivalent resistance $R_{eq} = R_1 + R_2$

$$
a \longrightarrow \bigwedge_{R_{eq}} \bigwedge b
$$

$$
a - \bigvee \bigvee b
$$
 $R_{eq} = R_1 + R_2$

Resistors in series, comments

- It makes sense that the resistances add
- Remember, resistance is something that impedes the flow of current
- If the current has to go through both resistors, the current has to overcome two "obstacles" to its flow

- The currents in the two resistors are different
- But the voltage drops across the two resistors are the same

 $\triangleright \bigvee_{ab} = I_1 R_1 = I_2 R_2$ \triangleright I = I₁ + I₂ = V_{ab} (1/R₁ + 1/R₂)

• Same as the current flowing through equivalent resistance R_{eq}

$$
a \longrightarrow \bigwedge_{R_{eq}} \bigwedge b
$$

$$
\boxed{\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}}
$$

How does the current split between two resistors in parallel?

•
$$
V_{ab} = I_1 R_1 = I_2 R_2 \rightarrow \frac{I_1}{I_2} = \frac{R_2}{R_1}
$$

- The current wants to flow through the smaller resistor
	- > Makes sense!

Resistors in parallel, comments $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \rightarrow R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$

- R_{eq} is always $<$ R_1 and $<$ R_2
- This also makes sense
- When the current encounters two resistors in parallel, there are two possible paths for the current to flow R_1 $\overline{I_1}$

• It makes sense that the current will have an easier time going past the "obstacle" than it would have if only one resistance was present

 R_{2}

 I_2

 a becomes a become b

 \blacksquare

Summary and contrast with capacitors

Resistors in series: $R_{eq} = R_1 + R_2 + R_3 + \dots$

Resistors in parallel: $\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

Capacitors in series: $\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

Capacitors in parallel: $C_{eq} = C_1 + C_2 + C_3 + \dots$

A big resistor and a small resistor...

 R_{eq} = 1 Ω + 1 MΩ = 1,000,001 Ω The big resistor wins.....

$$
\frac{1}{R_{\text{eq}}} = \frac{1}{1\Omega} + \frac{1}{1\text{M}\Omega}
$$

R_{eq} = 0.999999 Ω
The small resistor wins.....

Find the equivalent resistance

These three are in series. $R = 3 + 6 + 9 = 18 \Omega$

These three are in series $R + 2 + 3.9 + 8 = 13.9 \Omega$

These two are in parallel

$$
\frac{1}{R} = \frac{1}{4\Omega} + \frac{1}{13.9\Omega}
$$

R = 3.1 Ω

ริ11.1

Three resistors in series $R = 1 + 3.1 + 7 = 11.1 \Omega$

For two resistances in sereis, R_{eq} is greater 11 Note – for two resistances in parallel, R_{eq} < than each individual one.

Another example

Another example (k means kΩ)

Kirchoff's rules

- We have already applied them, at least implicitely
- First rule: at a node (or junction) $\Sigma I = 0$

Junction Careful about the signs! It is a good idea to always draw the arrows!

14 • This is basically a statement that charge is conserved

Kirchoff's rules (continued)

• Second rule: the total voltage drop across a closed loop is zero

For example: $V_{ab} + V_{bc} + V_{ca} = 0$ $(V_a - V_b) + (V_b - V_c) + (V_c - V_a) = 0$ But this holds for any loop, e.g. a-b-d-c-a or b-a-f-e-d-b,

Careful about signs:

- When you apply Kirchoff's 2nd rule, the absolute value of the voltage drop across a resistor is IR and across a source of emf is ε
- You must keep the sign straight! For emf, it is easy. For resistors, depends on the sign of I

These signs are such that current always runs from high to low potential. Note algebraically I can be +ve or -ve. What matters is your convention, i.e., the direction of the arrow

Another example: find R_{ed}

Add a fictitious source of current, say I=1A, across the terminals. Then if I can calculate the voltage across the terminals, $R = V/I$.

Also, label everything!!!!!

Kirchoff law for current: Node a: $I = I_1 + I_5$ Node e: $I_5 = I_4 + I_2$ Node d: $I_4 + I_1 = I_3$ Node b: $I_2 + I_3 = I$

4 equations, 5 unknowns $(l_1, l_2, l_3, l_4, l_5)$

Kirchoff law for current: Node a: $I = I_1 + I_5$ Node e: $I_5 = I_4 + I_2$ Node d: $I_4 + I_1 = I_3$ Node b: $I_2 + I_3 = I$

Now I apply Kirchoff law for voltage loops. ¹3 But let's be smart about it! I want V_{ab} (or V_{cf} , they are the same) $V_{ab} = 2I_5 + I_2$ $V_{cf} = I_1 + I_3$ Try to eliminate variables and remain with I_5 , I_2

Node b: eliminates I_3 : $I_3 = I - I_2$ Node a: eliminates I_1 :
acdea loop: $I_1 - I_4 - 2I_5 = 0 \rightarrow I_4 - I_5 - I_4 - 2I_5 = 0 \rightarrow I_4 = I - 3I_5$

Node e:
$$
I_5 = (I - 3I_5) + I_2 \rightarrow 4I_5 - I_2 = I
$$

acdfbea loop: $I_1 + I_3 - I_2 - 2I_5 = 0$
 $(I - I_5) + (I - I_2) - 2I_5 = 0$
 $2I - 2I_2 - 3I_5 = 0$

$$
4I_5 - I_2 = I
$$

2I – 2I₂ – 3I₅ = 0

Solution: $I_2 = 5I/11$ and $I_5 = 4I/11$

Then: $V_{ab} = 2I_5 + I_2$ $V_{ab} = 13I/11$

 $R_{eq} = 13/11 k\Omega = 1.2 k\Omega$

Note: Example 26.6 in the textbook is essentially the same. (It has resistances of Ω instead of k Ω) The book solves it using a battery rather than a fictitious current source. But the answer is the same, as it should! Check out the alternative method for yourself!

Find R_{eq} of this circuit:

- The other side of the 4 Ω resistor is not connected to anything
- It is as if it was not there!
- Two resistors in series, $R = 7 \Omega + 5 \Omega = 12 \Omega$

Another problem.....

le

Find the current through the 5 Ω resistor

First step: Label everything!

 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

Use Kirchoff law for current nodes to eliminate some variables.

Node c: $I_4 = I_2 + I_5 \rightarrow$ eliminate I_4 Node d: $I_6 = I_5 + I_3 \rightarrow$ eliminate I_6 Node b: $I_1 = I_3 + I_4 = I_3 + I_2 + I_5 \rightarrow$ eliminate I_1 Node f : $I_6 + I_2 = I_1$ $(I_5 + I_3) + I_2 = I_3 + I_2 + I_5 \rightarrow$ no extra information ! Now everything is in terms of I_2 , I_3 and I_5 It is easy to eliminate I_3 : Loop bdb: $3I_4 + 4I_5 - 2I_3 = 0$ $3(I_2+I_5) + 4I_5 - 2I_3 = 0 \rightarrow I_3 = \frac{1}{2}(3I_2 + 7I_5)$

23

Loop fabcf: $-12 + 2I_1 + 3I_4 - 5I_2 = 0$ $-12 + 5I_2 + 9I_5 + 3I_2 + 3I_5 - 5I_2 = 0$ $12I_5 + 3I_2 = 12$

 $-5I_2 + 4I_5 + I_6 - 18 = 0$ Loop fcdef $-5I_2 + 4I_5 + 3/2I_2 + 9/2I_2 - 18 = 0$ $13I_5 - 7I_2 = 36$

Two equations, two unknowns, can solve, get $I_2 = -2.24$ A