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Lecture 11: 2 Nov. 2004

Web page: 
http://hep.ucsb.edu/people/claudio/ph3-04/
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Midterm Results

Pick up your graded exam from Debbie Ceder, Broida 5114
Solutions are posted at 
http://hep.ucsb.edu/people/claudio/ph3-04/midterm.html
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Last Lecture
• Electrical potential energy

Work done by 
electric force in 

moving a charge
from a to b

Electric
force

Potential
energy at b

Potential
energy at a

• Integral independent of path
Conservative force

• Potential energy defined up to arbitrary 
constant 
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Last Lecture (cont.)
• Potential energy of system of two charges

r
q1

q2

• Most often, take Const. = 0
• For many charges, sum over all pairs

• Conservation of energy
Kinitial + Uinitial = Kfinal + Ufinal
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Last Lecture (cont.)
• Definition: if a charge q0 in an electric field 

has electric potential energy U, then the 
electric potential is defined as 

• Think of electric potential as "potential energy 
per unit charge"

• Much as electric field is "force per unit charge"
• Units: Joules/Couomb = Volt (V)
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Last Lecture (cont.)

And also an (obvious) generalization:

From definition V = U/q :
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Last Lecture (cont.)

• Can also get V starting from electric field

• This follows from definitions of V and U
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Example: potential from solid 
charged conducting sphere

• From the discussion of ~ two weeks ago based 
on Gauss' law all the charge is on the surface

• Divide the problem into two regions
Inside the sphere r < R
Outside the sphere

• Outside the sphere, we have seen already that 
E-field is same as if all charge was concentrated 
in the center

Potential same as for charge at the center, V=kQ/r
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Outside, r>R    V(r) = kQ/r

• Inside: from the discussion of ~ two weeks ago 
there is no electric field inside a conductor

Otherwise charges would be moving

• If we take a and b to be anywhere inside
Va – Vb = 0  or Va = Vb

Potential is constant inside a conductor
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Outside: r>R    V(r) = kQ/r
Inside: r<R    V(r) = constant

Q: What is the (constant) value of the potential inside?
A: By continuity, must be like on surface V(r) = kQ/R
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Another example: potential due to dipole
q1 = + 12nC and q2 = -12 nC, find potential at points a, b, c

q = 12 nC L=13 cm   d1=6 cm  d2=4 cm d3 = 14 cm
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• Remember, we had calculated the electric 
field due to a dipole in a previous lecture

• The calculation of the electric potential is 
much easier!

• This is because electric field is a vector, so 
we have to worry about components, 
whereas electric potential is a scalar (a 
number with some units)
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Another example: a line of charge
We previously calculated the electric field of this system. 
This was done by adding up the fields due to small elements
We'll do the same thing, but for the potential!

We'll be integrating over y
need to express dq in terms of dy

dq = (Q/2a)dy
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What happens for an infinite line charge?
Take the limit a ∞
Linear charge density λ = Q/2a

Use binomial expansion
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But a ∞.....so V also ∞ ..............  What gives? 

Remember:
Potential only defined up to additive constant
Only differences of potential meaningful
Consider difference of potential

Finite and well-defined!
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Another way to look at it....

....where I added in an arbitrary constant........
Now, I choose C such that at some value x=x0, V(x0) = 0 

Plugging this value of C into the equation for V(x)....

Finite and well-defined!
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And yet another way to look at it...

• We saw in a previous lecture that the 
electric field due to infinite line of charge is 
r

• We can calculate the potential starting from 
E (rather than from the charge distribution) 
using 

Same result as before!
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Another example: ring of charge
First Method:  use

We are integrating over the ring r is constant, 
so we can pull it out of the integral sign:
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Second Method, start from E-field

(from lecture two weeks ago)
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Take x2 = ∞ and V(∞)=0
Choosing V(∞)=0 is equivalent to choosing the arbitrary constant 

Same result as before!
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Equipotential lines and surfaces
• Remember electric field lines

A tool to visualize the electric field
Lines drawn parallel to the electric field
With arrows pointing in the direction of the 
electric field
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Equipotentials
Lines (or surfaces in 3D) of constant potential
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Equipotentials, continued

• Note, from previous slides, that equipotentials
are perpendicular to field lines

• Why?
• Potential does not change as we move along an 

equipotential

= 0 along equipotential
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More on equipotentials

• It is customary to draw equipotentials at 
constant intervals in ∆V

The figure above has V = 30, 50, 70... V, i.e., ∆V = 20 V

• Then, the field is stronger where the density 
of equipotentials is highest

Since ∆V is the same between each pair of 
equipotentials, this way the work done in moving a test 
charge between pairs of equipotentials is always the 
same.  Since work = Force x Distance, and Force = 
charge x E-field, when the distance is smallest, the E-
field must be highest
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Equipotentials and Conductors

• We argued previously that the electric field must 
be perpendicular to the surface of a conductor

• This is because otherwise the charges on the 
surface of the conductor would be moving

• It then follows that the surface of a conductor is 
an equipotential
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Potential Gradient
• We will now derive a fundamental relationship 

between potential and electric field

• But

• This must hold for any (a,b) pair and any path 
between the two

• For this to be true then
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• Write out the components

• Then, in terms of components:

• Suppose the displacement is in the x-direction
• Then dy=dz=0, and –dV=Exdx, or
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• Can do same thing for the other two components

• Or in short-hand notation

• is called the "gradient" or the "grad"
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• If we shift  V V + Const. the E-field does not 
change

• Makes sense, since V is only defined up-to 
arbitrary constant

• The expression above for the gradient is in 
"Cartesian Coordinates"

Cartesian coordinates: x,y,z
• One important result:

If V is a function of r (and not of angle) then
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Simple applications of gradient law
• Point charge:

• Infinite line of charge
Slide 16, this lecture

constant


