Fall 2004 Physics 3 Tu-Th Section

> Claudio Campagnari Lecture 10: 28 Oct. 2004

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Today: Electric Potential Energy

- You should be familiar with the concept of gravitational potential energy from Physics 1
- Let's review
- If a force \vec{F} acts on a particle as the particle moves from a \rightarrow b, then

$$W_{a \to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l}$$

is the work done by the force $(d\vec{l} \text{ is the infinitesimal displacement along the path})$

Careful: the force does not necessarily line up with the displacement For example, a block sliding down an inclined plane under the influence of gravity:

Conservative force

• A force is conservative if the work done by the force is independent of path

> Only depends on the initial and final points

 Then the work done can be written as function of the difference between some properties of the begin and final point

$$W_{a \to b} = \int_a^b \vec{F} \cdot d\vec{l} = -[U(b) - U(a)]$$

$$W_{a \to b} = \int_a^b \vec{F} \cdot d\vec{l} = -[U(b) - U(a)]$$

- U is the potential energy
- W = $-\Delta U$
- Work energy theorem:

work = change in kinetic energy $W_{a\rightarrow b} = K(b) - K(a)$ K(a) + U(a) = K(b) + U(b)

 Potential energy defined up to additive constant Remember gravitational field, force, potential energy

- Near the surface of the earth, constant force $\vec{F} = m\vec{g}$
- Think of it as mass times constant gravitational field \vec{g}
- Then gravitational potential energy U=mgh

Now imagine charge q₀ in constant electric field

- Constant force $\vec{F}=q_0\vec{E}$
- By analogy with gravity $U = q_0 Ey$

• U = electric potential energy of the charge q_0 Careful: the y-axis points opposite to the E field ⁷

Electric field

lines

- If q₀ is positive
 - The force is downwards
 - The force "pushes" the charge downwards, towards <u>smaller</u> y
 - The force tends to make U smaller
- If q₀ is negative
 - The force is upwards
 - The force "pushes" the charge upwards towards larger y
 - ➤ This <u>also</u> tends to make U <u>smaller</u>
 - because of the –ve sign of the q_0 in the expression U= q_0 Ey 8

Potential energy of two point charges

• Remember the definition

 $W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{l} = -[U(b) - U(a)]$

 Consider displacement along line joining the two charges ("radial displacement

Test charge q_0 moves from a to balong radial line from q q_0 q_0

9

 $U(r) = k \frac{qq_0}{r} + \text{Const.}$

This holds if the work is independent of path \rightarrow Look at a different path $r_a \rightarrow r_b$

Test charge q_0 moves from *a* to *b*

along radial line from a

$$W_{a \to b} = \int_{r_a}^{r_b} \vec{F} \cdot d\vec{l}$$

$$\vec{F} \cdot d\vec{l} = F dl \cos \phi = F dr$$

$$\Rightarrow \underline{The \text{ work depends only on}}$$

$$= \underline{radial \text{ displacement}}$$

does not depend on the amount

of "sideways" displacement

Work only depends on initial and final values of r

Summary:

Potential energy of <u>two point</u> charges $U(r) = k \frac{qq_0}{r} + \text{Const.}$

where *r* is the distance between the two charges

- Most often we take Const=0 for simplicity
- Then $U \rightarrow 0$ as $r \rightarrow 8$

Always tendency to reduce potential energy

If we have many charges...

- Consider electric field caused by a bunch of charges q₁, q₂, q₃,...
- Bring a test charge q₀ into the picture

• Potential energy associated with q₀

$$U = \frac{q_0}{4\pi\epsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \cdots \right) = \frac{q_0}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$

(point charge q_0 and collection of charges q_i)

Potential energy is an additive quantity

Many charges (cont.)

- If I have a collection of charges, the interaction of each pair will contribute to the total potential energy of the system
- A compact way of writing it is

$$U_{\text{total}} = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

- Where
 - q_i and q_j are the i-th and j-th charge
 r_{ij} is the distance between i-th and j-th charge
 i<j insures no double counting 13

 $=\frac{1}{4\pi\epsilon_0}\sum_{i< j}\frac{\pi_{ij}}{r_{ij}}$

You should try to get used to this kind of compact notation! Let's see an example. Three charges. What are the terms? Possibilities are

Only some of these satisfy the i<j condition

Then the sum becomes

$$U_{\text{total}} = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right]$$

You see that each pair of charges enters once and only once

Work to and from infinity $U(r) = k \frac{qq_0}{r} + \underbrace{c}_{\text{rst.}}^{= 0}$ Convention!

Work done by the electric field in going from $a \rightarrow b$

 $W_{a \to b} = U(a) - U(b)$

U(∞)=0 → U(r) can be thought of as the work that the electric field would do in moving the test charge q₀ from its position to ∞
Conversely, the work that an external force would need to do to bring the charge from ∞ to its current

position is –U

Example

• A particle of charge q and mass m is accelerated from rest by a constant electric field E. What is the velocity after the particle travelled a distance L?

Guiding principle: <u>conservation of energy</u> $K_{initial} + U_{initial} = K_{final} + U_{final}$

16

opposite to the electric field. But here the x-axis points in the same direction as the electric field!

$$K_{initial} + U_{initial} = K_{final} + U_{final}$$
$$K_{initial} = 0 \text{ and } K_{final} = \frac{1}{2} \text{ m v}^{2}$$
$$U(x) = -qEx + Constant$$
$$U_{initial} = -qEx_{initial} + Constant$$
$$U_{final} = -qEx_{final} + Constant$$

 $0 - qEx_{initial} + Const. = \frac{1}{2} m v^2 - qEx_{final} + Const.$

$$\frac{1}{2} \text{ m v}^2 = qE(x_{\text{final}} - x_{\text{initial}})$$

$$v^2 = 2qEL/m$$

Note that the arbitrary constant dropped out

Another example (Prob. 23.3)

A metal sphere, charge $q_1 = -2.8 \ \mu\text{C}$ is held stationary by an insulating support. A 2nd sphere, $q_2 = -7.8 \ \mu\text{C}$ amd m=1.5 g is moving towards q_1 . When the two spheres are d=0.8 m apart, q_2 is moving with v=22 m/sec. (a) What is the speed of q_2 when the spheres are 0.4 m apart? (b) How close does q_2 get to q_1 before turning back?

Conservation of energy $K_1 + U_1 = K_2 + U_2$

$$\begin{array}{ll} \mathsf{K}_1 = \frac{1}{2} \ m \ v_1{}^2 & \mathsf{U}_1 = k \ \mathsf{q}_1 \mathsf{q}_2/\mathsf{d}_1 \\ \mathsf{K}_2 = \frac{1}{2} \ m \ v_2{}^2 & \mathsf{U}_2 = k \ \mathsf{q}_1 \mathsf{q}_2/\mathsf{d}_2 \end{array}$$

Conservation of energy $K_1 + U_1 = K_2 + U_2$

$$K_{1} = \frac{1}{2} m v_{1}^{2} \qquad U_{1} = k q_{1}q_{2}/d_{1}$$

$$K_{2} = \frac{1}{2} m v_{2}^{2} \qquad U_{2} = k q_{1}q_{2}/d_{2}$$

 $\frac{1}{2} m v_1^2 + k q_1 q_2/d_1 = \frac{1}{2} m v_2^2 + k q_1 q_2/d_2$ $v_2^2 = v_1^2 + 2(k/m)q_1q_2 (1/d_1 - 1/d_2)$

$$v_2 = \sqrt{22^2 + 2\frac{9 \cdot 10^9}{1.5 \cdot 10^{-3}} (-2.8 \cdot 10^{-6}) (-7.8 \cdot 10^{-6}) \left(\frac{1}{0.8} - \frac{1}{0.4}\right)} \text{ m/s}$$

$$v_2 = 12.5 \text{ m/s}$$

Next: where does it stop? It stops when $v_2 = 0$; the conservation of energy equation:

$$\frac{\frac{1}{2} \text{mv}_{1}^{2} + k q_{1}q_{2}/d_{1} = k q_{1}q_{2}/d_{2}}{d_{2}} = d_{1} \frac{kq_{1}q_{2}}{mv_{1}^{2} + 2kq_{1}q_{2}} = 0.32 \text{ m}$$

20

Electric potential

 Definition: if a charge q₀ in an electric field has <u>electric potential energy</u> U, then the <u>electric potential</u> is defined as

$$V = \frac{U}{q_0}$$

- Think of electric potential as "potential energy per unit charge"
- Much as electric field is "force per unit charge"

Electric Potential $V = \frac{U}{q_0}$

- Electric potential is a property of the electric field and varies as a function of position in space
- Since U is defined up to an arbitrary constant, V is also defined <u>up to an</u> <u>arbitrary constant</u>.
- Only <u>differences</u> in potential between two points are meaningful
- Jargon: potential of a with respect to b

$$V_{ab} = V_a - V_b$$
²²

Electric Potential $V = \frac{U}{q_0}$

- Units: [V] = [U]/[Q] = Joule/Coulomb
- Definition 1 Volt = 1 J/C

Abbreviation: V

• Potential of a w.r.t. b (V_{ab}) also called voltage

$$V_{ab} = V_a - V_b = \frac{U_a - U_b}{q_0} = \frac{W_{a \to b}}{q_0}$$

- V_{ab} = work done <u>by electric force</u> in moving unit charge from a to b
- V_{ab} work done <u>against electric</u> force in moving unit charge from b to a

How to not get confused by the signs!

Just remember one general principle

- The electric force does positive work in moving from high electric potential energy to low electric potential energy
- Just like gravity does positive work in moving a body down towards the surface of the earth
 - \succ Body is high \rightarrow potential energy is high
 - \succ Body is low \rightarrow potential energy is low

Using previous results for U....

$$V = \frac{U}{q_0} = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \qquad \text{(potential due to a point charge)}$$

$$V = \frac{U}{q_0} = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$
 (potential due to a collection of point charges)

And also an (obvious) generalization:

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$
 (potential due to a continuous distribution of charge) 25

V from E

 Given a charge distribution, it is straight forward (in principle!) to find V

$$V = \frac{U}{q_0} = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$

Sometimes you can get V starting from E

$$W_{a \to b} = U_a - U_b$$

$$W_{a \to b} = \int_a^b \vec{F} \cdot d\vec{l} = \int_a^b q_0 \vec{E} \cdot d\vec{l}$$

$$V_a = \frac{U_a}{q_0}$$

$$V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l} = \int_a^b E \cos \phi \, dl$$
26

Example

Back to charge q in constant electric field

What is
$$\Delta V = V_{\text{initial}} - V_{\text{final}}$$
?

$$\Delta V = \int_{x_{\text{initial}}}^{x_{\text{final}}} \vec{E} d\vec{x} = EL$$

The electron volt (eV)

- Consider an electron accelerated through a potential difference of $\Delta V=1 V$.
- Change in potential energy $\Delta U = -e\Delta V$
- This must be compensated by a change in kinetic energy $\Delta K = e\Delta V = 1.6 \ 10^{-19} \ J$
- Definition of electron volt (eV):
 The kinetic energy gained by an electron accelerated through a ΔV = 1 Volt
- $1 eV = 1.6 \ 10^{-19} J$
- Useful unit of energy in atomic physics, chemistry, etc.

This is a <u>unit of energy</u>, not potential

Don't get confused

The largest accelerator

CERN LHC (Geneva, Switzerland)

Underground tunnel 26 Km circumference

Accelerates protons to $7 \text{ TeV} = 7 \ 10^{12} \text{ eV}$

France

These are the same