Fall 2004 Physics 3 Tu-Th Section

Claudio Campagnari

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Chapter 15: Waves What is a wave?

 \mathcal{P}

From www.dictionary.com:

Physics.

- A <u>disturbance traveling</u> through a <u>medium</u> by which energy is transferred from one particle of the medium to another without causing any permanent displacement of the medium itself.
- A graphic representation of the variation of such a disturbance with time.
- –A single cycle of such a disturbance.

Close, but not quite right!!!

"disturbance" and "medium"

Disturbance = displacement from equilibrium Medium =

material in which displacement occurs

Combined long. and transv. wave on liquid surface

So what's wrong with dictionary.com?

- There are waves that do not need a "medium" to propagate.
- e.g., Electromagnetic Waves (light) can propagate in vacuum.
	- This was a hard concept to swallow at the end of the 19th century, but it is the way it is.
- For now we concentrate on mechanical waves that propagate in a medium.

Longitudinal vs. Transverse

- Longitudinal: the disturbance is <u>parallel</u> to the direction of propagation.
- Transverse: the disturbance is <u>perpendicular</u> to the direction of propagation.

Wave Velocity (Speed)

The "disturbance" propagates in space

Do not confuse the velocity of the wave with the velocity of the particles in the medium

Wave pulses vs. periodic waves

v

In a periodic wave the disturbance repeats itself and the motion of the particles of the medium is periodic

Sinusoidal waves

- Special case of periodic wave where the motion of each particle in the medium is simple harmonic with the same amplitude and the same frequency.
- Resulting wave is a symmetrical sequence of crests and troughs:

• Important because <u>any</u> periodic wave can be represented as the sum of sinusoidal waves (Fourier decomposition)

Sinusoidal waves (cont.)

Wavelength (λ):

Distance over which displacement repeats

Period (T): Time over which displacement repeats

Frequency (f): $f=1/T$

10Velocity (v): $\mathsf{v}=\lambda\mathsf{\Lambda}\mathsf{T}=\lambda\mathsf{f}$

Mathematical Description

- Waves on a string for concreteness xy
	- Wave Function: a function that describes the position of any particle at any time:
	- $\bullet\,$ y(x,t)
	- Take y=0 as equilibrium position, i.e., unperturbed, stretched string

Mathematical description (sinusoidal wave)

- Take particle at x=0. Its motion is described by $y(x=0,t)$.
- It undergoes Simple Harmonic Motion (SHM) $y(x=0,t) = A \cos(\omega t + \delta) = A \cos \omega t$ (set $\delta=0$)
- What is then y(x,t), i.e., the displacement at any other position along the string?
- The disturbance travels with velocity v.
- The motion at any x at a given time t is the same as it was at $x=0$ at a time t-x/v

$$
y(x,t) = A \cos[\omega(t - \frac{x}{v})]
$$

$$
y(x,t) = A \cos[\omega(\frac{x}{v} - t)]
$$

Wave number: $k = \frac{2\pi}{\omega}$ $\lambda = \frac{2\pi}{k}$, $f = \frac{\omega}{2\pi}$, $v = \lambda f$ $\rightarrow \omega = v k$ $\rightarrow y(x,t) = A \cos(kx - \omega t)$

Nothing fundamental here: just different ways of writing the same thing.........

Note: this is for waves moving in positive x-direction. For a wave moving in negative x-direction, kx-ωt becomes kx+ ω t

Aside: sines and cosines, don't get confused!

- SHM
- $y = A \sin(\omega t + \delta)$
	- $=$ A cos δ sin ω t + A sin δ cos ω t
- If you choose
	- – δ =0 $\;\;\;\rightarrow$ y = A sin ω t
	- – $- \delta = 90$ $^{\circ}$ \rightarrow y = A cos ω t

The wave equation

Familiar SHM properties:

$$
y(x,t) = A \cos(kx - \omega t)
$$

\n
$$
v_y = \frac{\partial y(x,t)}{\partial t} = \omega A \sin(kx - \omega t)
$$

\n
$$
a_y = \frac{\partial v_y}{\partial t} = \frac{\partial^2 y(x,t)}{\partial t^2}
$$

\n
$$
a_y = -\omega^2 A \cos(kx - \omega t) = -\omega^2 y(x,t)
$$

\nBut also:

$$
\frac{\partial^2 y(x,t)}{\partial x^2} = -k^2 A \cos(kx - \omega t) = -k^2 y(x,t)
$$

One of the most important equations in physics. Whenever we encounter it we can say that a disturbance ("y") can propagate along the x-axis with velocity v.

• Any function y(x,t)=y(x±vt) is a solution of the wave equation.

For example:

$$
y(x,t) = A \cdot \frac{(x \pm vt)^3}{\cos \alpha (x \pm vt)}
$$

or

- $y(x,t) = B \cdot e^{\gamma(x \pm vt)} + \frac{C}{(x \pm vt)^2}$ etc..........
- 17• All these functions represent disturbances propagating to the right or the left with speed v

Proof that y(x±vt) is solution of wave equation $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{x^2} \frac{\partial^2 y(x,t)}{\partial t^2}$

Let $z = x \pm vt$ so that $y(x,t)=y(x \pm vt)=y(z)$

So left-hand side of wave equation:

$$
\frac{\partial^2 y}{\partial x^2} = \frac{d^2 y}{dz^2}
$$

Wave equation for a string

- $\bullet\;$ F = string tension
- • μ = string mass/unit length = M/L
- Ignore weight (gravity), ignore stretching of string
- Look at forces on length ∆x of string

Slopes: $\left(\frac{\partial y}{\partial x}\right)$ $\left(\frac{\partial y}{\partial x}\right)$

Net vertical force: $F_y = F_{1y} + F_{2y} = F\left[\left(\frac{\partial y}{\partial x}\right)_{x + \Delta x} - \left(\frac{\partial y}{\partial x}\right)_x\right]$

Newton's 2nd Law:

$$
F_y = (\mu \Delta x) \frac{\partial^2 y}{\partial t^2}
$$

$$
F\left[\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x} - \left(\frac{\partial y}{\partial x}\right)_x\right] = (\mu \Delta x) \frac{\partial^2 y}{\partial t^2}
$$

$$
\frac{\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x} - \left(\frac{\partial y}{\partial x}\right)_{x}}{\Delta x} = \left(\frac{\mu}{F}\right) \frac{\partial^2 y}{\partial t^2}
$$

Take limit $\Delta x \rightarrow 0$: $\frac{\partial^2 y}{\partial x^2} = \left(\frac{\mu}{F}\right) \frac{\partial^2 y}{\partial t^2}$

Remember wave equation: $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$ $v = \sqrt{\frac{F}{\mu}}$

Wave equation for string

- Derived with no assumption on shape
- V 2 = F/μ
- Does it make intuitive sense?
	- –V increases with F (restoring force)
	- –V decreases with mass (inertia)