Homework 3 Clarification + a Bonus

27 October 2023

Imagine an “experiment” that has a binary result, success vs. failure. For example, flipping a coin, success=heads, failure=tails.
I want to estimate the probability \(p \) of success by repeating the experiment many times. In the flipping the coin example, I want to estimate the probability of getting heads (it should be 50% if the coin is “fair”).
I perform the experiment \(N \) times. The number of successes (heads, in the coin example) is \(S \). Then my estimate of \(p \) is \(\hat{p} = S/N \). This is not the ”true” value of \(p \) because there will be random fluctuations in the number of successes \(S \). This is an example of a stochastic (ie: random) binomial process.
Let \(p_0 \) be the true value of \(p \). On average I will get \(\hat{p} = p_0 \), ie, \(S = Np_0 \). But this is only on average. In reality the experimental value \(S \) will fluctuate around the average (or mean). It can be shown that as long as \(N \) is large enough, and \(p_0 \) is not too close to zero or one, \(S \) will be distributed approximately according to a Gaussian ("bell curve") of mean \(Np_0 \) and standard deviation \(\sigma(S) = \sqrt{Np_0(1-p_0)} \).
Since \(\hat{p} = S/N \), and \(S \) has standard deviation \(\sigma(S) \), my estimate \(\hat{p} \) will have a standard deviation \(\sigma(p) = \sigma(S)/N = \sqrt{p_0(1-p_0)/N} \). The (relative) accuracy or precision is then \(\sigma(p)/p = (\sqrt{p_0(1-p_0)/N})/p_0 \).
Note that as \(N \) increases, my estimate of \(p \) gets better and better (\(N \) is in the denominator). This makes sense and it is to be expected. What is perhaps not so obvious is that the precision goes like the \(1/\sqrt{N} \).

1 Bonus part: derivation of statements mentioned above

1.1 Probability of observing \(S \) out of \(N \) for a given \(p_0 \)
Assume we have \(S \) successes out of \(N \). Think of a series of \(N \) trials, with \(S \) successes (denoted by 1) and \(N - S \) failures denoted by 0. A particular such series might look like this:

\[
1,1,0,0,0,1,1,\ldots,0,0,1
\]

Since there are \(S \) successes and \(N - S \) failures, such a series will have probability \(p_0^S(1-p_0)^{N-S} \). But there are \(\binom{N}{S} \) equally likely ways of rearranging the 1’s and
0's to obtain different series with \(S \) successes. Therefore the probability of \(S \) successes out of \(N \) trials is

\[
p(S \text{ out of } N) = \binom{N}{S} p_0^S (1 - p_0)^{N-S} = \frac{N!}{S!(N-S)!} p_0^S (1 - p_0)^{N-S}
\]

1.2 Mean and Standard Deviation of \(S \), the easy way

Notation:

- \(< A > = \text{mean of } A\)
- \(\text{Var}(A) = < A^2 > - < A >^2 = \text{variance of } A = \sigma^2(A)\). The standard deviation of \(A \) is the square root of the variance, ie, \(\sigma(A) \)

We use the trick that \(< x + y >= < x > + < y > \) and \(\text{Var}(x + y) = \text{Var}(x) + \text{Var}(y)\) where \(x \) and \(y \) are independent random variables. We take the \(N \) trials as \(N \) independent random variables \(x_i \) with \(x_i = 0 \) or \(1 \) for failure or success, so that \(< S >= N \cdot < x_i > \) and \(\text{Var}(S) = N \cdot \text{Var}(x_i)\). Then

\[
< x_i >= 1 \cdot p_0 + 0 \cdot (1 - p_0) = p_0 \quad \rightarrow \quad < S >= Np
\]

(not a surprise...). For the variance:

\[
< x_i^2 >= 1^2 \cdot p_0 + 0^2 \cdot (1 - p_0) = p_0
\]

\[
\text{Var}(x_i) = < x_i^2 > - < x_i >^2 = p_0 - p_0^2 = p_0(1 - p_0) \quad \rightarrow \quad \sigma^2(S) = Np_0(1 - p_0)
\]

or

\[
\sigma(S) = \sqrt{Np_0(1 - p_0)}
\]

1.3 Mean of \(S \), the hard way

The mean of \(S \) is given by

\[
< S >= \sum_{I=0}^{I=N} I \cdot p(I \text{ out of } N) = \sum_{I=0}^{I=N} I \binom{N}{I} p_0^I (1-p_0)^{N-I} = \sum_{I=0}^{I=N} I \frac{N!}{I!(N-I)!} p_0^I (1-p_0)^{N-I}
\]

Since the first term in the sum is zero, I can just start the sum from \(I = 1 \) instead of \(I = 0 \)

\[
< S >= \sum_{I=1}^{I=N} I \frac{N!}{I!(N-I)!} p_0^I (1-p_0)^{N-I}
\]
We now use the identity $I \binom{N}{i} = N \binom{N-1}{i-1}$, which gives:

$$< S > = \sum_{i=1}^{I=N} N \binom{N-1}{i-1} p_i^0 (1 - p_0)^{N-I} = N \sum_{i=1}^{I=N} \binom{N-1}{i-1} p_i^0 (1 - p_0)^{N-I}$$

Now we write $p_i^I = p_0 p_i^{I-1}$:

$$< S > = N p_0 \sum_{i=1}^{I=N} \binom{N-1}{i-1} p_i^{I-1} (1 - p_0)^{N-I}$$

Which I can rewrite as

$$< S > = N p_0 \sum_{i=1}^{I=N} \binom{N-1}{i-1} p_i^{I-1} (1 - p_0)^{(N-1)-(I-1)}$$

Write $J = I - 1$ and $M = N - 1$:

$$< S > = N p_0 \sum_{J=0}^{J=M} \binom{M}{J} p_J^0 (1 - p_0)^{M-J}$$

$$< S > = N p_0 \sum_{J=0}^{J=M} p(J \text{ out of } M)$$

But the sum of $p(J \text{ out of } M)$ over all possible values of J is one. Therefore:

$$< S > = N p_0$$

1.4 Standard deviation of S, the hard way

We start by calculating the mean of S^2. Proceeding as before

$$< S^2 > = \sum_{I=0}^{I=N} I^2 \ p(I \text{ out of } N) = \sum_{I=0}^{I=N} I^2 \ \binom{N}{I} p_I^0 (1 - p_0)^{N-I}$$

As before, we start the sum at $I = 1$, use the identity $I \binom{N}{1} = N \binom{N-1}{1}$. write $p_I^I = p_0 p_I^{I-1}$, $J = I - 1$ and $M = N - 1$. We arrive at:

$$< S^2 > = N p_0 \sum_{J=0}^{J=M} (J + 1) \ \binom{M}{J} p_J^0 (1 - p_0)^{M-J}$$

Let’s split the sum into two pieces:

$$< S^2 > = N p_0 \sum_{J=0}^{J=M} p_J^0 (1 - p_0)^{M-J} + N p_0 \sum_{J=0}^{J=M} J \ p_J^0 (1 - p_0)^{M-J}$$
\begin{equation}
<S^2> = Np_0 \sum_{J=0}^{J=M} p(J \text{ out of } M) + Np_0 \sum_{J=0}^{J=M} J \ p(J \text{ out of } M)
\end{equation}

The first sum is equal to one (just as we argued at the end of Section 1.3). The second sum is the mean of \(M \) trials, which is \(Mp_0 = (N-1)p_0 \). Thus:
\begin{equation}
<S^2> = Np_0 + N(N-1)p_0^2 = N^2p_0^2 + Np_0(1-p_0)
\end{equation}

The variance of \(S \) is
\begin{equation}
\sigma^2(S) = <S^2> - <S>^2 = N^2p_0^2 + Np_0(1-p_0) - (Np_0)^2 = Np_0(1-p_0)
\end{equation}

The standard deviation is the square root of the variance, thus
\begin{equation}
\sigma(S) = \sqrt{Np_0(1-p_0)}
\end{equation}

1.5 Gaussian Approximation

Here we derive a Gaussian approximation valid for large \(N \) and \(p_0 \) not too close to 1 or zero. The approximation is valid in the “neighborhood” of the mean \(<S> = Np_0\). Note since \(N \) is large and \(p_0 \) is not close to 0 or 1, in the neighborhood of the mean both \(S \) and \(N - S \) are also large.

We start with the equation for \(p(S \text{ out of } N) \) from Section 1.1, and apply Stirling’s approximation for the factorial\footnote{https://tinyurl.com/ywtdna9d}:
\begin{equation}
k! \approx k^k e^{-k} \sqrt{2\pi k}
\end{equation}

(this approximation works quite well, and gets better and better as \(k \) gets larger and larger). Then, after some boring algebra:
\begin{equation}
p(S \text{ out of } N) \approx \left(\frac{Np}{S}\right)^s \left(\frac{Nq}{N-S}\right)^{N-s} \sqrt{\frac{N}{2\pi S(N-S)}}
\end{equation}

where for simplicity I wrote \(p = p_0 \) and \(q = (1-p_0) \). For reasons that will become clear later, I rewrite
\begin{equation}
p(S \text{ out of } N) \approx Be^{\log A}
\end{equation}

where
\begin{equation}
B = \sqrt{\frac{N}{2\pi S(N-S)}}
\end{equation}

and
\[
\log A = \log \left(\frac{N_p}{S} \right)^S \left(\frac{N_q}{N - S} \right)^{N - S}
\]

Now I define \(\delta = S - N_p \). Note that \(N_p \) is the mean, so \(\delta \) is the deviation from the mean. Since we are in the neighborhood of the mean, \(\delta \ll N_p \). Now consider the quantity

\[
\log \frac{N_p}{S} = \frac{N_p}{\delta + N_p} = -\log(1 + \frac{\delta}{N_p})
\]

Similarly:

\[
\log \frac{N_q}{N - S} = \log \frac{N_q}{N - \delta} = -\log(1 - \frac{\delta}{N_q})
\]

Another key approximation is based on the fact that \(\frac{\delta}{N_p} \ll 1 \) and \(\frac{\delta}{N_q} \ll 1 \). This then allows us to use the approximation \(\log(1 + x) \approx x - \frac{1}{2}x^2 \), valid for small \(x \) and good up to terms of order \(x^3 \). Using this expansion and also the relationships \(\delta = S - N_p \) and \(N - S = N_q - \delta \):

\[
\log A \approx -\left(\frac{\delta + N_p}{N_p} \right) \left(\frac{\delta}{N_p} - \frac{\delta^2}{2N^2p^2} \right) - \left(\frac{N_q - \delta}{N_q} \right) \left(-\frac{\delta}{N_q} - \frac{\delta^2}{2N^2q^2} \right)
\]

Multiplying through and dropping terms proportional to \(\delta^3 \):

\[
\log A \approx -\frac{\delta^2}{2Np} - \delta - \frac{\delta^2}{2Nq} + \delta = -\frac{\delta^2}{2Npq}(p + q) = -\frac{\delta^2}{2Npq}
\]

since \(p + q = 1 \). Going back to the equation for \(B \):

\[
B = \sqrt{\frac{N}{2\pi S(N - S)}} = \sqrt{\frac{N}{2\pi(\delta + N_p)(N_q - \delta)}} = \sqrt{\frac{N}{2\pi(N^2pq + Nq\delta - Np\delta - \delta^2)}}
\]

Since \(\delta \) is small, we can drop the terms proportional to \(\delta \) in the denominator and write

\[
B \approx \sqrt{\frac{1}{2\pi Npq}}
\]

Now that we have approximate expressions for \(B \) and \(\log A \), we can plug them back into the original equation for \(p(S \text{ out of } N) \):

\[
p(S \text{ out of } N) \approx B e^{\log A} \approx \sqrt{\frac{1}{2\pi Npq}} \exp \left(-\frac{\delta^2}{2Npq} \right)
\]

But \(\delta = S - N_p = S - < S > \), where \(< S > \) was the mean obtained in Section 1.2; also, in Section 1.2 we had the variance \(\sigma^2(S) = Npq = Np_0(1 - p_0) \). Thus
\[p(S \text{ out of } N) \approx \sqrt{\frac{1}{2\pi\sigma^2(S)}} \exp\left(-\frac{(S-\langle S \rangle)^2}{2\sigma^2(S)}\right) = \frac{1}{\sqrt{2\pi\sigma(S)}} \exp\left(-\frac{(S-\langle S \rangle)^2}{2\sigma^2(S)}\right) \]

which is the equation of Gaussian of mean \(\langle S \rangle \) and standard deviation \(\sigma(S) \).