These slides describe an example Monte Carlo simulation of a physical process

The code is in :

/home/pi/physrpi/campagnari/python/muonSim.py

We will "simulate" the process $pp \to W^+ \to \mu^+ \nu$ In particular we are interested in the momentum distribution of the muons.

What really happens is $u\bar{d} \rightarrow W^+ \rightarrow \mu^+ \nu$

up-quark from one proton and anti-down quark from the other proton

 x_1 and x_2 are the fraction of total proton momentum carried by the quarks

The PDFs for x(up-quark) and x(anti-down quark) inside a proton

Note: nobody knows how to calculate these!!!! They are "measured"

Interesting physics, the W is polarized.

- This is a weak interaction process
- Only left handed quarks and right handed antiquarks contribute
 - Parity violation....the world is left handed!
- As a result the W which is S=1 will have $S_z = \pm 1$ and never $S_z = 0$

In real life one would have to generate the z component of the W momentum, ie, pick the x's appropriately. However

- 1. This is complicated (there are dedicated libraries to do this -- probably not in python)
- 2. Not important for what we care about (more on this later)

So let's work in the W rest frame (equivalent to $x_1=x_2$)

Mass of W:M =80.4 GeV/c2Mass of μ :m = 0.105 GeV/c2 ~ 0Mass of ν :m < 10-9 GeV/c2 ~ 0</td>

In the massless approximation both muon and neutrino have momentum $P = \frac{1}{2} Mc = 40.2 \text{ GeV/c}$ The direction of the muon with respect to the spin has PDF:

P(cosα) dcosα ~ $(1 + cosα)^2$ dcosα

Since the spin can be in the +z or -z direction with equal probability, the pdf for the space angle θ is

P(cosθ) dcos θ ~ (1 + cos²θ) dcosθ

Therefore we should

- Pick a $\cos\theta$ according to
- Give the muon this momentum

Physics aside: the ang. distribution is from the QM rotation matrices. Has to do with changing the axis of quantization for angular momentum

A complication

Heisenberg uncertainty principle $\Delta E \Delta t \sim h/2\pi$

- Energy is mass and mass is energy
- W bosons live for a very short Δt
- Therefore the "mass" of a W boson in a given collision is not always 80.4 GeV
- It is "broadened" according to the relativistic Breit Wigner function

 $f(M) = \frac{C}{(M^2 - M_0^2)^2 + M^2 \Gamma^2}$

Where

 $M_0 = 80.4 \text{ GeV/c}^2$

 Γ = 2.2 GeV/c²

C is a normalization constant

Another ingredient

We are "simulating" pp collisions at CERN The two big experiments Atlas and CMS are embedded in solenoids with constant B-field in the z direction.

Charged particles bend in the magnetic field. Their trajectories are measured.

Knowing the B-field and the curvature, can measure

"transverse momentum"

$$P_T = \sqrt{P_x^2 + P_y^2}$$

 P_{T} is measured with finite resolution.

About 1.5%

(It is more complicated than that, but OK)

Plan of work to obtain the P_T distribution of muons

- 1. Pick a W mass M from a Breit Wigner
- 2. Pick a $\cos\theta$ for the muon in the W rest frame
- 3. $P = \frac{1}{2} Mc$ and $P_T = P \sin\theta = \frac{1}{2} Mc \sin\theta$
- 4. Pick a transverse momentum for the W from the distribution of the previous page. Call that Q_T . The x-axis will be the direction of Q_T
 - Choosing Q_T along x-axis (or y-axis) is arbitrary. Makes algebra in (6) a tiny bit easier
- 5. Pick a random azimuthal angle ϕ for the muon in the W rest frame
 - $P_x = P_T \sin \phi$ $P_y = P_T \cos \phi$
- 6. Boost the muon momentum from the rest frame to the LAB frame
 - The boost is in the x-direction. $\beta \gamma = cQ_T/M$
- 7. Calculate the P_{T} of the muon in the LAB after the boost
- 8. "Smear" it by its resolution
- 9. Plot it

What about the motion of the W in z?

- We wanted to look at the transverse momentum of the muon
- Can go from a W with $P_z=0$ to a W with finite P_z by performing a boost of the system in the z-direction.
- But a boost in the z direction leaves all x and y momentum components unchanged
- Therefore: it does not matter that we worked with P_z=0
 - At least for the one simple plot we want to make

CDF experiment, Fermilab, 2007

