These slides describe an example Monte Carlo simulation of a physical process

The code is in :
/home/pi/physrpi/campagnari/python/muonSim.py

We will "simulate" the process $p p \rightarrow W^{+} \rightarrow \mu^{+} \nu$
In particular we are interested in the momentum distribution of the muons.

\qquad

What really happens is $u \bar{d} \rightarrow W^{+} \rightarrow \mu^{+} \nu$
up-quark from one proton and anti-down quark from the other proton

$$
\xrightarrow[\text { momentum } x_{1} P]{\text { up quark }} \frac{\text { anti-down quark }}{\text { momentum } x_{2} P}
$$

x_{1} and x_{2} are the fraction of total proton momentum carried by the quarks

The PDFs for x (up-quark) and x (anti-down quark) inside a proton

Note: nobody knows how to calculate these!!!!
They are "measured"

Interesting physics, the W is polarized.

- This is a weak interaction process
- Only left handed quarks and right handed antiquarks contribute
- Parity violation....the world is left handed!
- As a result the W which is $S=1$ will have $S_{z}= \pm 1$ and never $S_{z}=0$

In real life one would have to generate the z component of the W momentum, ie, pick the x's appropriately. However

1. This is complicated (there are dedicated libraries to do this -- probably not in python)
2. Not important for what we care about (more on this later)

So let's work in the W rest frame (equivalent to $x_{1}=x_{2}$)

$$
\begin{array}{ll}
\text { Mass of } W: & M=80.4 \mathrm{GeV} / \mathrm{c}^{2} \\
\text { Mass of } \mu: & m=0.105 \mathrm{GeV} / \mathrm{c}^{2} \sim 0 \\
\text { Mass of } v: & m<10^{-9} \mathrm{GeV} / \mathrm{c}^{2} \sim 0
\end{array}
$$

The direction of the muon with respect to the spin has PDF:

$$
P(\cos \alpha) d \cos \alpha \sim(1+\cos \alpha)^{2} d \cos \alpha
$$

Since the spin can be in the $+z$ or $-z$ direction with equal probability, the pdf for the space angle θ is

$$
P(\cos \theta) d \cos \theta \sim\left(1+\cos ^{2} \theta\right) d \cos \theta
$$

Therefore we should

- Pick a $\cos \theta$ according to
- Give the muon this momentum

In the massless approximation both muon and neutrino have momentum
$P=1 / 2 \mathrm{Mc}=40.2 \mathrm{GeV} / \mathrm{c}$
Physics aside: the ang. distribution is from the QM rotation matrices. Has to do with changing the axis of quantization for angular momentum

A complication

Heisenberg uncertainty principle $\Delta \mathrm{E} \Delta \mathrm{t} \sim \mathrm{h} / 2 \pi$

- Energy is mass and mass is energy
- W bosons live for a very short Δt
- Therefore the "mass" of a W boson in a given collision is not always 80.4 GeV
- It is "broadened" according to the relativistic Breit Wigner function

$$
f(M)=\frac{C}{\left(M^{2}-M_{0}^{2}\right)^{2}+M^{2} \Gamma^{2}}
$$

Where
$\mathrm{M}_{0}=80.4 \mathrm{GeV} / \mathrm{c}^{2}$
$\Gamma=2.2 \mathrm{GeV} / \mathrm{c}^{2}$

C is a normalization constant

Another ingredient

We are "simulating" pp collisions at CERN
The two big experiments Atlas and CMS are embedded in solenoids with constant B-field in the z direction.

Charged particles bend in the magnetic field.
Their trajectories are measured.
Knowing the B -field and the curvature, can measure "transverse momentum"

$$
\stackrel{\text { momentum" }_{P}^{P}}{P_{T}}
$$

P_{T} is measured with finite resolution.
About 1.5\%
(It is more complicated than that, but OK)

Another complication

The W actually has a some P_{T} as well

This made-up function kind of look like it. So we will use it

Plan of work to obtain the P_{T} distribution of muons

1. Pick a W mass M from a Breit Wigner
2. Pick a $\cos \theta$ for the muon in the W rest frame
3. $P=1 / 2 M c$ and $P_{T}=P \sin \theta=1 / 2 M c \sin \theta$
4. Pick a transverse momentum for the W from the distribution of the previous page.

Call that Q_{T}. The x-axis will be the direction of Q_{T}

- Choosing Q_{T} along x-axis (or y-axis) is arbitrary. Makes algebra in (6) a tiny bit easier

5. Pick a random azimuthal angle ϕ for the muon in the W rest frame

- $P_{x}=P_{T} \sin \phi \quad P_{y}=P_{T} \cos \phi$

6. Boost the muon momentum from the rest frame to the LAB frame

- The boost is in the x-direction. $\beta \gamma=c Q_{T} / M$

7. Calculate the P_{T} of the muon in the LAB after the boost
8. "Smear" it by its resolution
9. Plot it

What about the motion of the W in z ?

- We wanted to look at the transverse momentum of the muon
- Can go from a W with $\mathrm{P}_{\mathrm{z}}=0$ to a W with finite P_{z} by performing a boost of the system in the z-direction.
- But a boost in the z direction leaves all x and y momentum components unchanged
- Therefore: it does not matter that we worked with $\mathrm{P}_{\mathrm{z}}=0$
- At least for the one simple plot we want to make

CDF experiment, Fermilab, 2007

