Winter Quarter 2019 — UCSB Physics 129L
Homework 9 — not for credit

This optional exercise requires you to figure out quite a few things for your-
self. A solution (note necessarily the solution) is available on the website.
Warning: I had some difficulties making my code work on the rpi due to
the obsolete software installation. The first problem was that I could not
read the “pickle” data file that had been prepared on a different machine.
I fixed that by also providing an equivalent csv file, as discussed below. I
then found an incompatibility between libraries that you may or may not
also encounter, depending on what method you use to tackle the problem.
The error message that I encountered and that I could not get around was:
ValueError: the ’dtype’ parameter is not supported in the pandas
implementation of sum()

The bottom line is that if you have a better installation of python on your
own computer you should use it instead of the rpi. I am sorry about that,
but this is real life!

The goal of the exercise is to take some features of a set of preselected
simulated events from LHC collisions and use a multivariate machine learn-
ing algorithm to separate “signal” events from “background” events. The
particular signal that you are looking for is not important for this exercise
— you can ask me separately about that if you are interested. The starting
point is either
/home/pi/physrpi/campagnari/python/data_fourtop.pkl or
/home/pi/physrpi/campagnari/python/data_fourtop.csv.

These are equivalent pickle or csv files containing the same pandas data
frame. On my MAC I can read both, but on the rpi I can only read the csv
file. Figure 1 is a screenshot of a jupyter notebook session that shows you
how to read the file and also shows you what the data frame (partially) looks
like.

You can think of a pandas data frame as sort of an excel spreadsheet.
Each row in the dataframe corresponds to one simulated pre-selected event,
and each event (or row) is characterized by a number of variables. The first
column (“signal”) tells you whether the event is signal (=1) or background
(=0). The second column (“weight”) is the relative weight of each event, i.e.,
the relative probability of the event (a) being produced in a proton-proton
collision, and (b) passing the pre-selection requirements of a (very!) realistic

1

In [2): # read the pickle file or the csv file
df = pd.read pickle("data fourtop.pkl")
df_bad = pd.read_csv('data_fourtop.csv")
If we are reading csv, we need to drop cne column
df = df bad.drop(['Unnamed: 0'], axis=1)
df

out[2]:

signal weight htb nbtags njets nleps pti1 pti7 pth pti2 pti3 gl
0 1.0 0.000364 206.779850 2.0 7.0 2.0 373.429020 46.658970 137.676560 67.604260 -1.000000 -1.0
1 0.0 0.004883 35588070 1.0 3.0 2.0 188.072630 0.000000 121.428140 53.178535 -1.000000 -1.0
2 0.0 0.003294 489508370 2.0 4.0 3.0 408.042100 0.000000 208.297500 41.227450 156.992800 -1.0
3 0.0 0004319 85794580 1.0 3.0 2.0 276633800 0.000000 87.203580 49023970 -1.000000 -1.0
4 0.0 0.002928 296.612200 2.0 4.0 2.0 242500760 0.000000 123.082630 41.000244 -1.000000 1.0
5 0.0 0001323 96.686806 1.0 3.0 2.0 163.566330 0.000000 34.729890 26.165741 -1.000000 1.0

Figure 1: Screen shot of a jupyter notebook session for reading the pandas
data frame.

LHC data analysis. The other ten columns give measured characteristics of
the event. Again, what they really represent is not so important, but I can
tell you if you are interested.

You should plot histograms of these ten quantities for both signal and
background, keeping track of the weights. You will find that signal and
background are a little different in every variable. Some variables are better
than other at distinguishing signal from background.

We will next combine these ten variables into a single variable that max-
imizes the separation between signal and background. You can do this by
trying different classification algorithms, with different settings. There are
several such algorithms available. Some examples are here:
https://tinyurl.com/y690t733
but there are more on the market. The solution that I posted is based on a
Boosted Decision Tree using the AdaBoost algorithm.

Some general notes

e (lassifiers have several knobs you can turn. Experiment until you find
something you like.

e You should divide your sample into a training and testing sample. The
training sample should be used to train the classifier. The testing
sample should be used to test how well the separation really works. This
is because the classifier may be "tuning’ itself on statistical fluctuations,
so it is important to test on a statistically indepenedent sample.

e To see how well you are doing, you should construct a “receiver oper-

https://tinyurl.com/y69ot733

ating curve” (ROC) and calculate the “area under the curve” (AUC).
See https://tinyurl.com/y8d819uz.

e If you google around a little bit you will find python functions that
calculate and plot ROCs and AUCs with minimal work on your part.
Or you can look at my solution and copy it...

Good luck and have fun. Come see me and show me what you have, and
let’s see if you can do better than I did. Figures 2, 3, and 4, summarize my
results

10 1

0.8 4

05 1

04 4

signal efficiency

02 1

— test set (ALUC = 0.87)
0.0 4 train set (AUC = 0.B8)

0.0 0.2 0.4 0.6 0.8 10
background efficiency

Figure 2: ROC curve and AUC.

https://tinyurl.com/y8d8l9uz

14 - 0 bkg, train
m W sig, train
5 12 1 [bkg, test
E [sig, test
g 101
8
= B8
N
"
B
3
=
i 4
=
g 2]
ﬂ u

020 -015 -010 -005 000 005 010 15
bdt output

Figure 3: BDT output distributions for signal and background, normalized
to the same area.

1 [sig
10" 4 I kg
§ 1'I]’“§
T 10 A
=] i
i=J
CY]
= 1072 E
10-3 E

020 -015 -010 -005 000 005 010 015
bdt output

Figure 4: BDT output distributions for signal and background, normalized
by the weights.

