Exercise 1

The experimental apparatus in the figure consists of four thin charged particle detectors at \(x = 2, 3, 5, \) and 7 cm. Each detector is segmented with many 50 \(\mu \)m wide strips that measure the \(y \)-coordinates of charged particles going through. (Note: if the width of the strip is \(w \), the \(y \)-coordinate is measured with an uncertainty \(w/\sqrt{12} \).)

Particles traveling along the \(y \)-axis in the positive \(x \) direction decay somewhere in the vicinity of \((x = 0, y = 0) \) into two charged particles that leave hits in the detectors. You are interested in finding the \(x \) coordinate of the decay for a given pair of tracks. A simulation of many such particle decays has been carried out. The simulated data are in

/home/pi/physrpi/campagnari/python/straightTracks.txt

Each line of this file has information for one pair of tracks as follows:

\[
X0 \ Y0 \ y00 \ y01 \ y02 \ y03 \ y10 \ y11 \ y12 \ y13
\]

where

\(X0, \ Y0 = \) true common point of origin of pair (\(Y0 \) always 0)
\(yij = \) digitized coordinate of track \(i \) at detector \(j \)

All lengths in cm

Your job now is to write a program using the \(yij \) and the known \(x \) positions

\[^{1}\text{If you do not believe this, calculate for yourself the variance of a set of numbers picked uniformly at random between 0 and } \(w \).\]
of the four detectors to estimate X_0. To do this, you need to fit the coordinates of each track to a straight line. You can use either `np.polyfit` or `curve_fit` from `scipy.optimize`. From the straight line fit, for each pair, you can extract the intercepts of the two tracks with the y-axis: (X_1 and X_2). Then, to check how well you are doing, make histograms of

- $X_1 - X_0$ and $X_2 - X_0$ (put both quantities into the same histogram).
- $X_{av} - X_0$ where X_{av} is the average of X_1 and X_2

The histograms should have 100 bins between -500 and $500 \, \mu m$. Include a statistics box using `ccHistStuff.py` (it is interesting to see how many overflows and underflows you have!!). You should find (not surprisingly) that X_{av} is usually a better estimated of X_0 than X_1 or X_2.

This last part is not for credit, try it if you feel like it:

Keep track of the uncertainties on X_1 and X_2. To do this you need access to the covariance matrix. Because (as discussed in class) the version of `np.polyfit` installed on the rpi has problems with covariance matrices, you need to use `curve_fit`. Then for each intercept X_i extract its uncertainty and histogram the pull, defined as $X_i - X_0$ divided by the uncertainty. If everything is well, the pull should be close to a Gaussian of mean 0 and sigma one. Then, instead of calculating the average of X_1 and X_2, calculate the weighted average $X_{av,w}$, and plot $X_{av,w} - X_0$.

Finally: you probably have developed a sense by now that some intercepts are more precise than other. Think about why that might be, and “explore” the data to verify your theory.
Exercise 2

In Homework 4 Exercise 1 you were asked to plot some data from a npy file. The data were exponentially distributed, and they look best when displayed on a log scale such as in the Figure below, with 40 bins, from 0 to 20.

Perform a χ^2 fit of the histogram as defined above to an exponential function $f(x) = p_0e^{-p_1x}$. Construct the χ^2 as a sum over bins of $(N - f(x))^2/N$, where N is the number of entries in the bin and x is the center of the bin. Setting the denominator to N assumes that N is large enough to be in the Gaussian regime. For this reason limit your fit to the first 25 bins of the histogram. Superimpose your fitted function on the histogram and output the fitted parameters and the fitted χ^2 to the screen. You can recycle your solution to Homework 4 Exercise 1 as a starting point (even better: you can start from the solution provided on the website, since it sets up the appropriate binning for you).

Do not use any prepackaged fitting routines. Use the method described in class. Lecture notes are available on the website. Examples can be found in:

/home/pi/physrpi/campagnari/python/simpleFit_v1.py
/home/pi/physrpi/campagnari/python/simpleFit_v2.py

2Strictly speaking the denominator should be $f(x)$, but this is a detail that is usually overlooked.
Exercise 3

We can improve on the determination of X_0 in Exercise 1 by performing a constrained fit, i.e., instead of fitting the two tracks separately, we fit them simultaneously, imposing the requirement that they have the same intercept with the x-axis. So instead of having two fits with two free parameters each, we have one fit with three parameters in total. (It takes three parameters to describe two lines that intersect the x-axis at the same point). The single χ^2 is then constructed from the 8 measurements and the predicted track hits. Perform this constrained fit using the method described in class. Plot $X_f - X_0$ in a histogram with 100 bins between -500 and $500 \, \mu m$, where X_f is the fitted value of the intercept. Plot also the pull, i.e., $X_f - X_0$ divided by the uncertainty in X_f.

Note: this is a semi-realistic problem in experimental high energy physics. In the real world, the tracks are in 3D (not 2D), they bend in a magnetic field, they are constrained to come from the same 3D point (not simply $y = 0$), there may be more than 2 tracks in the vertex, the detector is more complicated, etc. etc.