Here are some notes on the "direct method" and the "acceptance/rejection" method for generating random numbers x according to a pdf $f(x) d x$ starting from a uniform random number generator between 0 and 1 .

For the direct method the recipe is:

- Calculate the cumulative distribution

$$
F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

- Set $\quad R=F(x)$
- Solve for $x(R)$
- Generate a bunch of uniform random numbers R
- For each R calculate $x(R)$
- You now have a bunch of x 's which follow a pdf $f(x) d x$

Full disclosure: these are not by notes (except for the $1^{\text {st }}$ page). They were given to me when I was a graduate student, and I have somehow kept them all this time.

Want to generate a variable x distributed according to a PROBABILITY DISTRIBUTION $f(x) d x$ -
Let us PICK RANDOM NUMBER R DISTRIBUTED UNIFORMLY BETWEEN O AND 1,
(1.e. ITS PROBABILITY DISTRIBUTION $P(R) d R$ is SUCH THAT $P(R)=1$). WHAT SHOULD BE $x(R)$ SUCH THAT x is DISTRIBUTED AS $f(x) d x$?

START WIT $\quad P(R) d R$
CHANGE VARIABLES TO $x(r) \Rightarrow P(R) d R=d R=\frac{d R}{d x} d x$
SO $\frac{d R}{d y} d x$ IS THE PROBABILITY DISTRIBUTION FOR x
We want $\frac{d R}{d x}=f(x) \Rightarrow R=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}$
LETS DEFINE $F(x)=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}$
THEN $\quad R=F(x) \Rightarrow x=F^{-1}(R)$

Monte Carlo Methods
A. Direct Method for Continuous Random Variable
We want to generate x for which the distribution function is $f(x), \quad \int_{-\infty}^{\infty} f(x) d x=1$ We define the cumulative distribution function

$$
F(x)=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

The direct method says

$$
\begin{gathered}
F(x)=R \\
x=F^{-1}(R)
\end{gathered}
$$

where R is a random number

$$
f(R)= \begin{cases}1, & 0 \leq R \leq 1 \\ 0 & \text { else where }\end{cases}
$$

$4 n$

$$
\begin{aligned}
& f(x)=\frac{1}{2} e^{-x / \lambda} \quad 0 \leqslant x \leq \infty \\
& F(x)=1-e^{-x / \lambda} \\
& \text { set } 1-e^{-x / \lambda}=R^{\prime}=1-R
\end{aligned}
$$

Then $x=-\lambda \ln R$

Move General

$$
\begin{aligned}
f(x) & =A e^{-x / 2} \quad x_{1} \leqslant x \leqslant x_{2} \\
x & =\lambda \ln \left[-\left(e^{-x_{2} / 2}-e^{-x_{0} / 2}\right) R+e^{-x_{2} / 2}\right]
\end{aligned}
$$

More Examples of Direct Method

$$
\begin{aligned}
& \begin{cases}\frac{f(x)}{\frac{n-1}{x^{n}}, n>1} & \text { Range } \\
\frac{8}{x^{2}} & 0, \infty \\
& 0, \infty\end{cases} \\
& \text { Solution } \\
& x=R^{\frac{1}{1-n}} \\
& x=1 / R \\
& \begin{cases}(n+1) x^{n} n \neq-1 & 0,1 \\
3 x^{2} & 0,1\end{cases} \\
& x=R^{\frac{1}{n+1}} \\
& x=\sqrt{R} \\
& \frac{\sin \theta}{2} \quad 0, \pi \quad \cos \theta=1-2 R \\
& \frac{i}{\pi / 2}\left(E-E_{0}\right)^{2}+(\pi / 2)^{2}-\infty, \infty \quad E=E_{0}+\frac{\Gamma}{2} \tan \left[\pi\left(R-\frac{1}{2}\right)\right]
\end{aligned}
$$

Limitations of the direct. method

1. Must know functional form of $f(x)$ el $F(x)$
2. Must be able to integrate $f(x)$ is $F(x)$ not Known by itself. 3. Must able to invent $F(x)$.
B. The Aceeptance-Rejcction method does nos need items 2 and 3 above:

Consider a simple escanple

$$
\begin{aligned}
& f(x)=2 x+3 x^{2}-4 x^{3} \\
& f(x)=x^{2}+x^{3} x^{4}
\end{aligned}
$$

The equation $f(x)=R$ is time consuming to solve

$$
f(x)=2 x+3 x^{2}-4 x^{3}
$$

Acceptance - Rejection Method

1. Choose $x: x=R_{1}$
2. Choose y: $y=y_{\text {mane }} R_{2}$
3. Kep x if (x, y) is under $f(x)$

Same thing in different words

1. Chasse x: $x=R_{1}$
2. Assign a weight $w=f(x) / y \max$
3. Reject if $R_{2}>W$
C. Combination of direct and

Acceptasses-Rejection Methods
Example: $f(x)=A x^{1 / 2} e^{\infty 3 / 2}$

$$
0 \leq x<\infty
$$

The direct method would be difficult at best (I don't know how.)
Simple Aoceptence-Rejection is impossible
Look for a furicition with a finite area that is always larger then $f(x)$
In chis case

Procedure:

1. Generate is according to

$$
f(x)=e^{-x}, \quad x=-\ln R_{1}
$$

2. Keep this if $f x \gg R_{2} e^{-x}$

The efficiency of this meting (fraction of attempts accepted) is $\sqrt{e A}=\frac{\sqrt{e \pi}}{2(3 / 2)^{3 / 2}}=0.795$
\% Special Cases

1. Normal Distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma^{\sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Can be generated in pains

$$
\int f(x) f(y)=\frac{1}{2 \pi} \iint e^{-\frac{x^{2} y^{2}}{2}} d x d y=\int_{0}^{\infty} r e^{-r^{2} / 2} d r \int \frac{d \phi}{2 \pi}
$$

for $\mu=0, \sigma=1$
This can be integrable and inverted to give

$$
\begin{aligned}
& r=\sqrt{-2 R_{0} R_{1}} \\
& \phi=2 \pi R_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{G 1}=\mu+\sigma r \sin \phi \\
& R_{G 2}=\mu+\sigma r \cos \phi
\end{aligned}
$$

R_{G} and Rot are independent gaussian rondos numbers.

