A common problem in physics

Dig out “signal” for some interesting but rare process
out of a sea of “background”

Toy example here from high energy physics

First step: select “events” with patterns of final state
particles/kinematics according to what your signal
should look like to distinguish it from background

Most likely this selection will give you both signal
and background events

You then have to
— Decide whether you have a signal or not

— |If so, estimate how “strong” your signal is

* because you are trying to “measure” something physical, eg, a
cross-section



Sometimes it is fairly obvious
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Obviously there is a signal. Precisely estimating the strength
of the signal is a different story



Sometimes less so
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Here the signal is “ ”. (t=top quark...W=W boson)

What is plotted is a “machine learning” “boosted decision tree” discriminant
which combines a lot of information into one single variable that looks
different for signal and background



Sometimes it’s kind of hopeless
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In general have to fit the data distribution to sum
of signal (S) + background (B) distributions

This could mean fitting

— A single 1D histogram

— A 2D (or 3D, or..) histogram

— Several different histograms simultaneously
— Or even single events in an unbinned fashion

Obviously you need to select and treat your data
intelligently, and understand the pdfs for S and B

— Including uncertainties

We now look at a semi-realistic example
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Want to estimate number of signal (S) and
background events (B)
— actually, we usually mostly only care about S

— See “Appendix” for what we really mean by this
Use the histograms as PDFs

Because many of the bins are low stats, need
Poisson Uncertainties = use NLL

{s;} and {b.} are the binned pdfs for S and B

— Normalized to 1, ie, 2s;=1 and Zb, =1
{d.} are contents of i-th bin in the (pseudo) data
The model for the {d.} is

L = S¥s; + B*b,
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—log L

Zﬂi—dilogui
—logl = ) S-si+B-b;—d;log(S-si+B-b)
—logL = S+B_Zdilog(s'5i+3'bi)

This is actually called “extended log likelihood”

(I dropped an additive constant from the NLL)
Note: it does not look at all like a 2.

But as was discusses previously in the large d; limit it
is the same as 2 within a factor of %



We will fit with Minuit

Iiminuit tutorial at
https://nbviewer. jupyter.org/github/iminuit/iminuit/blob/master/tutorial/basic tutorial.ipynb

import numpy as np
import matplotlib.pyplot as plt
from iminuit import Minuit

Define the negative log likelihood function

# d, s pdf, and b bdf are np.arrays

# d = contents of data histogram

# s pdf = contents of signal pdf histogram

# b pdf = contents of background pdf histogram

# 5 = number of signal events

# B = number of background events

# Assume that pdf's are normalized, eg s_pdf.sum(}=ﬂ

def NLL(S,B):
temp = d * np.log(S*s_pdf + B*b pdf)
return S + B - temp.sum()

/home/pi/physrpi/campagnari/python/maxLikFit.py



# d, s pdf, and b bdf are np.arrays
# d contents of data histogram
# 5 pdf contents of signal pdf histogram
# b pdf contents of background pdf histogram
# 5 number of signal events
# B number of background events
# Assume that pdf's are normalized, eg s pdf.sum()=1
def NLL(S,B):
temp = d * np.log(S*s_pdf + B*b_pdf)
return S + B - temp.sum()

# Setup the fitter. S and B are the initial guesses

# print level=0 --> suppress print of intermediate information
# errordef = 0.5 because for NLL 1 sigma errors are from

- NLL-NLL(at minimum) = 0.5

# error S and error B are initial steps to look for minimum

errordef=0.5, error S=1.0, error B=1.0) o

# migrad is the basic minimizatio y,
Im.migrad() I s

m = Minuit(NLL, S=10., B=500., print_level=l, = | L .eeseeee®

Note: | could have told Minuit to
impose the constraint S$>0 and/or B>0

This is best to be avoided for technical
reasons.

However: with S and/or B < 0 some of
the calls to NLL could result in taking
log of negative number. | should
probably have protected against it, but
luckily it did not happen ©

v | run the code through a “jupyter notebook”
FCN = -2515.3836311930554 | TOTAL NCALL =46 NCALLS = 46 This gives a nicely formatted output.
EDM = 2.6719919762844715e-06 GOAL EDM = 5e-06 UP =05 It does not IOOk as n|ce When run norma”y
Valid Valid Param Accurate Covar PosDef Made PosDef But you get the same info.
True True True True False
Hesse Fail HasCov Above EDM Reach calllim Green means “it worked”
False True False False

I+

0 S 235185 10.2353 No

1 B 701.541 27.9716 No

Name  Value Hesse Error Minos Error- Minos Error+  LUimit-  Limit+  Fixed? The answer iS S — 23.5 .|_. 10.2
10



More sophisticated analysis: “minos”

# minos does not assume that the NLL 1is

# parabolic and calculates asymmetric errors
m.minos(var="5")
m.print param()

Minos status for S: VALID

Error -9.516333676056222 10.933566962130033
Valid

At Limit
Max FCN

New Min

+ Name Value Hesse Error Minos Error-  Minos Error+_ Limit- Limit+ Fixed?

0 S 23.5165 10.2353 -9.51633 10.9336 No

1 8 701.541 27.9716 No

S =23 5+109

PS: the dataset had 700 background events and 25 signal events .




# Profile scan of the fitted function (NLL).
# At each FIXED value of S, fit again for B,
# extract the NLL at the minimu, subtract

# the NLL at the GLOBAL minimum, and plot it

Ky

YYY, _ = m.mnprofile('S', subtract_min=True, bins=100, bound=(0,60))

deltaNLL

# m.mnprofile does all the work...

# Now we just plot the results

# deltaNLL = 0.5 (2, 4.5 ) corresponds to 1 (2, 3) sigmd
fig3, ax3 = plt.subplots()

ax3

ax3.
ax3.
ax3.
ax3.
ax3.
ax3.
.plot([min(xxx), max(xxx)], [4.5, 4.5], linestyle='dashed', color='red')

ax3

.plot(xxx,yyy,linestyle='solid', color='b')

set_xlim(min(xxx), max(xxx))

set_ylim(0.)

set_xlabel('S")

set_ylabel('deltaNLL')

plot([min(xxx), max(xxx)], [0.5, 0.5], linestyle='dashed', color='red')
plot([min(xxx), max(xxx)], [2.0, 2.0], linestyle='dashed', color='red')

\

One line of code
to do the scan

Just plotting
stuff

Can see by eye that it is not
exactly parabolic.

The asymmetry around the
minimum is what gives asym.
mMinos errors

This is almost 3o away from 0,
but not quite.
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Data here is plotted with sqrt(N) uncertainties.
Not quite right, but conventional
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Fraction of events

Systematics (simple example)

Imagine we do not know the background pdf perfectly
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This is our best guess for the bg pdf
(what we have used so far) .

Comes from some separate study we
may have done
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The dashed lines “bracket” at the 1 sigma
level our lack of knowledge of the bg pdf.
This “information” also would come from
some study

How to take this “shape uncertainty” into account?




Introduce a new parameter o that smoothly interpolates the options
for the background pdf:

Background PDF

b _pdf: the best guess 107! 4

bl pdf: one alternative

b2 pdf: the other alternative g 107

a>0: E -
pdf =b_pdf + o (b1_pdf-b_pdf) g 107 5 T

o<0: £ . 1
pdf = b_pdf - o (b2_pdf-b_pdf) i :

10° 1

This insures that for : : : : , . . . '
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o=0: pdf = b_pdf Boosted Decision Tree Score

o=1: pdf = bl pdf

o=-1: pdf = b2 pdf

(and all pdf’s in-between or even more “like” b1 _pdf or b2 _pdf)

Our best guess for a is =0, with o=1.
Let the data itself figure out what a should be

Modify the likelihood to include information on a L [ e 0‘2—2
o becomes a 3" parameter to be fit for 2
Include “prior” information on a in likelihood . log L — — logﬁ + o

. 5
“Nuisance parameter” 21



Old code, no shape uncertainty

# d, s pdf, and b bdf are np.arrays

# d = contents of data histogram

# s _pdf = contents of signal pdf histogram

# b pdf = contents of background pdf histogram

# 5 = number of signal events

# B = number of background events

# Assume that pdf's are normalized, eg s_pdf.sum()=ﬂ

def NLL(S,B):
temp = d * np.log(S*s_pdf + B*b_pdf)
return S + B - temp.sum()

# Setup the fitter. S and B are the initial guesses
# print level=0 --> suppress print of intermediate information
# errordef = 0.5 because for NLL 1 sigma errors are from
- NLL-NLL(at minimum) = 0.5
# error S and error B are initial steps to look for minimum
m = Minuit(NLL, S$=10., B=500., print_level=l,
errordef=0.5, error_S=1.0, error B=1.0)

New code, with shape uncertainty

# d, s pdf, b bdf, bl pdf, b2 pdf are np.arrays

# d = contents of data histogram

# 5 pdf = contents of signal pdf histogram

# b pdf = contents of default background pdf histogram
# bl pdf = contents of alternative 1 to b pdf

# b2 pdf = contents of alternative 2 too b pdf

# 5 = number of signal events

# B = number of background events

# alpha = parameter to interpolate between pdfs

# Assume that pdf's are normalized, eg s pdf.sum( )=l

def new NLL(S,B,alpha):
# code below insures that
# alpha=0 ---> use b pdf
# alpha=1 ---> use bl pdf
# alpha=-1 ---> use b2 pdf
# (and smoothly interpolates vs. alpha)
if alpha>0:

new b pdf = b pdf + alpha*(bl_pdf-b_ pdf)
else:
new b pdf = b pdf - alpha*(b2_pdf-b_pdf)

# should be already normalized, but make sure
new b pdf = new b pdf / new b pdf.sum()

temp = d * np.log(S*s_pdf + B*new b pdf)
return S + B - temp.sum() + alpha*alpha/2.

# Setup the fitter. S, B, alpha are the initial guesses

# print level=0 --> suppress print of intermediate information

# errordef = 0.5 because for NLL 1 sigma errors are from

-~ NLL-NLL(at minimum) = 0.5

# error S, error B, alpha: are initial steps to look for minimum

new_m = Minuit(new_ NLL, S=10., B=500., alpha=0., print_ level=1l,
errordef=0.5, error_S=1.0, error_ B=1.0, error_alpha=0.1)

16



Old code, no shape uncertainty

# d, s pdf, and b bdf are np.arrays
# d = contents of data histogram
# s _pdf = contents of signal pdf histogram
# b pdf = contents of background pdf histogram
# 5 = number of signal events
# B = number of background events
# Assume that pdf's are normalized, eg s_pdf.sum()=ﬂ
def NLL(S,B):
temp = d * np.log(S*s_pdf + B*b_pdf)

return S + B - temp.sum()

Shows the flexibility of Minuit.

The function to minimize is a NLL with

a bunch of Poisson terms from data
counts, but also with an additional term
that has nothing to do with data counts
and is most certainly not Poissonian

# Setup the fitter. S and B are the initial guesses
# print level=0 --> suppress print of intermediate information
# errordef = 0.5 because for NLL 1 sigma errors are from
- NLL-NLL(at minimum) = 0.5
# error S and error B are initial steps to look for minimum
m = Minuit(NLL, S$=10., B=500., print_level=l,
errordef=0.5, error_S=1.0, error B=1.0)

New code, with shape uncertainty

oW oW W W R W R R

d, s pdf, b bdf, bl pdf, b2 pdf are np.arrays

d = contents of data histogram

s pdf = contents of signal pdf histogram

b pdf = contents of default background pdf histogram
bl pdf = contents of alternative 1 to b pdf

b2 pdf = contents of alternative 2 too b pdf

5 = number of signal events

B = number of background events

alpha = parameter to interpolate between pdfs
Assume that pdf's are normalized, eg s pdf.sum()=1

def new NLL(S,B,alpha):

# code below insures that

# alpha=0 ---> use b pdf

# alpha=1 ---> use bl pdf

# alpha=-1 ---> use b2 pdf

# (and smoothly interpolates vs. alpha)
if alpha>0:

new b pdf = b pdf + alpha*(bl_pdf-b_ pdf)
else:
new b pdf = b pdf - alpha*(b2_pdf-b_pdf)

# should be already normalized, but make sure
new b pdf = new b pdf / new b pdf.sum()

temp = d * np.log(S*s_pdf + B*new b pdf)
return S + B - temp.sum() + alpha*alpha/2.

# Setup the fitter. S, B, alpha are the initial guesses

# print level=0 --> suppress print of intermediate information

# errordef = 0.5 because for NLL 1 sigma errors are from

= NLL-NLL(at minimum) = 0.5

# error S, error B, alpha: are initial steps to look for minimum

new_m = Minuit(new_ NLL, S=10., B=500., alpha=0., print_ level=1l,
errordef=0.5, error_S=1.0, error_B=1.0, error_alpha=0.1)

17



Minos status for S: VALID RESUltS With Shape unc.

Error -11.025370084171879 12.60857601321337

Valid True True
At Limit False False
Max FCN False False
New Min False False
+ Name Value Hesse Error Minos Error- Minos Error+  Limit-  Limit+  Fixed?
0 S 19.9292 11.8446 -11.0254 12.6086 No
1 =) 705.074 28.7197 No
2 alpha -0.412914  0.746692] No

S =19.9t+12:¢
S =23.51109

Uncertainty increased because we told the fitter

that we are not entirely sure about the shape of
the background (makes sense that we lose accuracy)

used to be
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Just about 2o from zero
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If the signal (or the background!) varies very fast, it makes

sense to make the bins small enough to capture the important

features of the distribution

In this example the signal (in red)
is sharply peaked.
The binsize is small enough.

Events / 3 GeV

A binsize of 50 GeV would have
completely lost all the information
on the signal.

10

Could make binsize even smaller

In the limit that we let the binsize
go to zero, we can perform an
unbinned ML fit

30
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Example of unbinned fit results

> 8 (a)
The S+B fit is blue =
The B component is red P
5 2
a1
. . . . 0 : . - : : s LN e,
This is an |ntere5t|ng case 52 521 522 523 524 525 526 527 528 529 5.3
mEs((}PV)

because the fitted S in the top

. : > © (b)
panel is negative! 2 s
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Note: the fit is unbinned but the £ | M ul J,J, l l Jl
data are plOttEd binned (hOW 05.2“5.‘21 15212 5..2131 15.‘2415:125 rs.:e s.rlzl;ls.lzan 529 53

mps(GeV)

else could we plot it?)

In order to perform an unbinned fit it is best if the the
pdf’s for S and B are continuous functions (instead of histograms)
But how does the procedure that we outlined change?
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Binned fit:
—logL = S+B-) d;log(S-s;+B-b)

d: =number of data counts in the i-th bin

S s; = number of expected counts in the j-th bin from signal

B b; = number of expected counts in the i-th bin from background
The sum is over bins

Unbinned fit:

X; = measured value of discriminating variable for i-th event
s(x) = pdf for signal
b(x) = pdf for background You will doing an

The sum is over events unbinned fitin a
future homework

22



A surprise: diphoton mass bump near 750 GeV?
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23



00 {&ﬂ Inbox (106) - campagnari@uc: X | - find title 750 or diphoton and « X n Google Calendar - Week of Mz X ‘ +

& C Y @ NotSecure | inspirehep.net/search?in=en&In=en&p=find+title+750+or+diphoton+and+date+>%3D+201¢

i Apps [@] Y Google Groups Rl Repubblica X CMS2 () GitHub W iCMS [ CMSNotes M) NewCADI @l SMURF

| N S P I R E Welcome to INSPIRE, the High Energy Physics inf

:: HepNames :: Instrrumions :: ConrFerences :: Joss :: Exp

find title 750 or diphoton and date »>= 2015-12-01 | Brief format )] Search Boois N
Lna IEEEWGE,!UF T more

Sort by: Display results:
|: title ¢:| |: desc. e] |: - or rank by - e] \: 25 results e] |: single list 3:\
HEP 457 records found| 1 - 25» M jump to record: 1

1. A yy collider for the 750 GeV resonant state
Min He (Shanghai Jiaotong U., INPAC & Shanghai Jiaotong U.), Xiao-Gang He (Shanghai Jiaotong U., INPAC & Shanghai Jiaotong U. & Tz
Mar 1, 2016. 10 pp.
Published in Phys.Lett. B759 (2016) 166-170
DOI: 10.1016/j.physletb.2016.05.056
e-Print: arXiv:1603.00287 [hep-ph] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 17 records

2. Wide or narrow? The phenomenology of 750 GeV diphotons
Matthew R. Buckley (Rutgers U., Piscataway). Jan 18, 2016. 16 pp.
Published in Eur.Phys.J. C76 (2016) no.6, 345
DOI: 10.1140/epjc/s10052-016-4201-y
e-Print: arXiv:1601.04751 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 58 records

3. What is the yy resonance at 750 GeV?

Roberto Franceschini, Gian F. Giudice (CERN), Jernej F. Kamenik (CERN & Ljubljana U. & Stefan Inst., Ljubljana), Matthew McCullough (C 24

Rattazzi (ITPP, Lausanne), Michele Redi (INFN, Florence), Francesco Riva (CERN), Alessandro Strumia (CERN & INFN, Pisa & Pisa U.),
D ihlichad in IMED 18072 (9048 144




733v1 [hep-ph]| 24 Dec 2015

How the 7y Resonance Stole Christmas

Nathaniel Craig®, Patrick Draper®, Can Kilic*, and Scott Thomas®

# Department of Physics, University of California, Santa Barbara, CA 93106, USA

¢ Weinberg Theory Group, Department of Physics and Texas Cosmology Center,
The University of Texas at Austin, Austin, TX 78712, USA

* New High Energy Theory Center, Rutgers University, Piscataway, NJ 08854, USA

Abstract

The experimental and theoretical implications of heavy di-gauge boson resonances that couple
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APPENDIX



Technicality

 The uncertainty on S returned by the extended log
likelihood fit is not the uncertainty on the number of
signhal events contained in the particular dataset

* This fact can be understood with a simple example
— Suppose B=0.
— Only 1 bin
— Let N = the number of events
— Since B=0, S=N

— There is no uncertainty whatsoever on the number of
signal events contained in this dataset. | have N events,
there is no background, so all of them are signal. Full stop.

* Let’s see what the formalism actually gives us, see
next page....
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—log£(S,B) = S+B—) d;log(S-s;+B-b)
—log L(S,B=0) = S —djlog(S-s1)
—logL(S) = S—Nlog$

This is minimized for S=N as expected.
The change in NLL moving away from the minimum S=N by ON is

ANLL = —logL(N +6N) +logL(N)

ANLL = 6N — Nlog(l +5£)

Expanding the log for small ON/N and large N):

N 1N N?
ANLL ~ 6N — N(d———(%)) - ‘;—N

Thus, the “1 sigma” uncertainty ON that one obtains
by setting ANLL= % is: 8N = o = VN

This is the usual counting uncertainty in the Gaussian regime that you
can interpret in a frequentist or baysean sense, as you like.



