
A common problem in physics

• Dig out “signal” for some interesting but rare process 
out of a sea of “background”

• Toy example here from high energy physics
• First step: select “events” with patterns of final state 

particles/kinematics according to what your signal 
should look like to distinguish it from background

• Most likely this selection will give you both signal 
and background events

• You then have to
– Decide whether you have a signal or not
– If so, estimate how “strong” your signal is 

• because you are trying to “measure” something physical, eg, a 
cross-section 
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Sometimes it is fairly obvious 

H à e+e-e+e-

H à e+e-µ+µ-
H à µ+µ-µ+µ-

Obviously there is a signal.  Precisely estimating the strength
of the signal is a different story 2



Sometimes less so

Here the signal is “ppàtW”. (t=top quark…W=W boson)
What is plotted is a “machine learning” “boosted decision tree” discriminant 
which combines a lot of information into one single variable that looks 
different for signal and background 
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Sometimes it’s kind of hopeless
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• In general have to fit the data distribution to sum 

of signal (S) + background (B) distributions

• This could mean fitting

– A single 1D histogram

– A 2D (or 3D, or..) histogram

– Several different histograms simultaneously

– Or even single events in an unbinned fashion

• Obviously you need to select and treat your data 

intelligently, and understand the pdfs for S and B

– Including uncertainties

• We now look at a semi-realistic example 
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B*
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• Want to estimate number of signal (S) and 
background events (B)
– actually, we usually mostly only care about S
– See “Appendix” for what we really mean by this

• Use the histograms as PDFs
• Because many of the bins are low stats, need 

Poisson Uncertainties à use NLL 
• {si} and {bi} are the binned pdfs for S and B
– Normalized to 1, ie,   Ssi = 1  and Sbi = 1

• {di} are contents of i-th bin in the (pseudo) data
• The model for the {di} is

µi = S*si + B*bi
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This is actually called “extended log likelihood”
(I dropped an additive constant from the NLL)
Note: it does not look at all like a c2.
But as was discusses previously in the large di limit it
is the same as c2 within a factor of ½ 
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We will fit with Minuit

Define the negative log likelihood function

/home/pi/physrpi/campagnari/python/maxLikFit.py
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Note: I could have told Minuit to 
impose the constraint S>0  and/or B>0

This is best to be avoided for technical 
reasons.

However: with S and/or B < 0 some of 
the calls to NLL could result in taking 
log of negative number.  I should 
probably have protected against it, but 
luckily it did not happen J

I run the code through a “jupyter notebook”
This gives a nicely formatted output.
It does not look as nice when run normally.
But you get the same info.

Green means “it worked”

The answer is S = 23.5 ± 10.2
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More sophisticated analysis: “minos”

! = 23.5'(.)*+,.(

PS: the dataset had 700 background events and 25 signal events 11



Can see by eye that it is not
exactly parabolic.

The asymmetry around the
minimum is what gives asym.
minos errors  

This is almost 3s away from 0,
but not quite.

One line of code
to do the scan

Just plotting
stuff
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Data here is plotted with sqrt(N) uncertainties.
Not quite right, but conventional 13



Systematics (simple example)
Imagine we do not know the background pdf perfectly

This is our best guess for the bg pdf
(what we have used so far) .
Comes from some separate study we
may have done  

The dashed lines “bracket” at the 1 sigma
level our lack of knowledge of the bg pdf.
This “information” also would come from
some study 

How to take this “shape uncertainty” into account?
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Introduce a new parameter a that smoothly interpolates  the options
for the background pdf:

b_pdf: the best guess
b1_pdf: one alternative
b2_pdf: the other alternative

a>0:
pdf = b_pdf + a (b1_pdf-b_pdf)

a<0:
pdf = b_pdf - a (b2_pdf-b_pdf)

This insures that for 
a=0: pdf = b_pdf
a=1: pdf = b1_pdf
a=-1: pdf = b2_pdf
(and all pdf’s in-between or even more ”like” b1_pdf or b2_pdf)

Our best guess for a is a=0, with s=1.
Let the data itself figure out what a should be
Modify the likelihood to include information on a
a becomes a 3rd parameter to be fit for
Include “prior” information on a in likelihood
“Nuisance parameter” 15



Old code, no shape uncertainty New code, with shape uncertainty
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Old code, no shape uncertainty New code, with shape uncertainty

Shows the flexibility of Minuit.
The function to minimize is a NLL with
a bunch of Poisson terms from data
counts, but also with an additional term
that has nothing to do with data counts
and is most certainly not Poissonian
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! = 19.9&''.()'*.+
used to be 

! = 23.5&/.0)'(./
Uncertainty increased because we told the fitter
that we are not entirely sure about the shape of
the background (makes sense that we lose accuracy) 

Results with shape unc.
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Just about 2s from zero  

Results with shape unc.
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If the signal (or the background!) varies very fast, it makes
sense to make the bins small enough to capture the important
features of the distribution 

In this example the signal (in red) 
is sharply peaked.
The binsize is small enough.

A binsize of 50 GeV would have
completely lost all the information
on the signal.

Could make binsize even smaller

In the limit that we let the binsize
go to zero, we can perform an 
unbinned ML fit 
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Example of unbinned fit results
The S+B fit is blue
The B component is red

This is an interesting case
because the fitted S in the top 
panel is negative!

! = −1.6'(.()(.*

Note: the fit is unbinned but the 
data are plotted binned (how 
else could we plot it?)

In order to perform an unbinned fit it is best if the the 
pdf’s for S and B are continuous functions (instead of histograms)
But how does the procedure that we outlined change? 
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Binned fit:

di = number of data counts in the i-th bin
S si = number of expected counts in the i-th bin from signal
B bi = number of expected counts in the i-th bin from background
The sum is over bins

Unbinned fit:

xi = measured value of discriminating variable for i-th event 
s(x) = pdf for signal
b(x) = pdf for background
The sum is over events

You will doing an 
unbinned fit in a 

future homework 
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A surprise: diphoton mass bump near 750 GeV?

Data from 1st higher energy LHC run (May-Nov 2015) presented in mid-December 2015 
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Updated results from 
August 2016.

~ 4 times more data

The peak is gone
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APPENDIX
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Technicality
• The uncertainty on S returned by the extended log 

likelihood fit is not the uncertainty on the number of 
signal events contained in the particular dataset

• This fact can be understood with a simple example
– Suppose B=0.  
– Only 1 bin
– Let N = the number of events 
– Since B=0, S=N
– There is no uncertainty whatsoever on the number of 

signal events contained in this dataset.  I have N events, 
there is no background, so all of them are signal. Full stop.

• Let’s see what the formalism actually gives us, see 
next page….
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This is minimized for S=N as expected.
The change in NLL moving away from the minimum S=N by dN is 

Expanding the log for small dN/N and large N):

Thus,  the “1 sigma” uncertainty dN that one obtains 
by setting DNLL= ½ is:  δ" = $ = "

This is the usual counting uncertainty in the Gaussian regime that you 
can interpret in a frequentist or baysean sense, as you like. 
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