About limits on counting. An example

- Want to find dark matter (DM)
- DM: something that does nor interact with photons
- Astrophysics: 25% of universe is DM

I will look for a DM particle (χ^{0}) to "hit" a nucleus and make it recoil. I invent a clever way to "detect" the recoil

- I do the experiment and count how many nuclear recoils I see (N)
- Despite my best efforts, some neutron recoils sneak into the sample.
- I work very hard to

1. Reduce them as much as possible
2. Estimate how many I should see on average (B)

- What I have seen is in principle the sum of neutron background and DM signal (S) $\rightarrow \mathrm{N}=\mathrm{S}+\mathrm{B}$
- What do I expect S to be? I don't really know
- Astro observation tell me what the DM density ρ (mass/unit volume) should be
- The number of DM particles crossing my detector will go like $\sim \rho / M$
- I do not know the strength of the interaction between DM and a nucleus. I can quantify it by an (unknown) interaction cross section σ
- My detector is not perfect. There is an efficiency to actually detect a DM-nucleus collision, which in general will depend on mass $\varepsilon(M)$
- Good news: since I built the detector I (should) know $\varepsilon(M)$

Bottom line: $\quad S \propto \frac{\rho \cdot \sigma \cdot \epsilon(M)}{M}$
This is the average expectation.
Based on two unknown parameters: σ and M .

In my one and only experiment I have seen N and $\mathrm{N}=\mathrm{S}+\mathrm{B}$ Both S and B are subject to fluctuations.
If $N \gg B$, I have seen DM, I book a trip to Stockholm.
If not, S is too small for me to discover $D M$, but I still want statement about DM, in particular about σ and M .

What is the largest possible value of S compatible with N and B ?
$N=5 B=3$. For given S, prob. of seeing N is Poisson of mean $S+3$ What is the prob. of seeing ≤ 5 as a function of S ?

$N=5 B=3$. For given S, prob. of seeing N is Poisson of mean $S+3$ What is the prob. of seeing ≤ 5 as a function of S ?

S	p	Excluded with 95% confidence?
10.5	0.8%	YES
9.3	1.4%	YES

$N=5 B=3$. For given S, prob. of seeing N is Poisson of mean $S+3$ What is the prob. of seeing ≤ 5 as a function of S ?

S	p	Excluded with 95% confidence?
10.5	0.8%	YES
9.3	1.4%	YES
8.2	3.4%	YES

$N=5 B=3$. For given S, prob. of seeing N is Poisson of mean $S+3$ What is the prob. of seeing ≤ 5 as a function of S ?

S	p	Excluded with 95%
confidence?		

$N=5 B=3$. For given S, prob. of seeing N is Poisson of mean $S+3$ What is the prob. of seeing ≤ 5 as a function of S ?

S	p	Excluded with 95%
confidence?		

Frequentist

The average value of S must be ≥ 7.5 with 95% confidence

Recast the exclusion on S in term of exclusion in a plot σ vs. M

