Physics 115B, Problem Set 4

Due Sunday, May 1, 5 pm

1 Angular Eigenstates

Consider the eigenfunctions of the orbital angular momentum operators L^{2} and L_{z} with $\ell=1$, namely $|\ell, m\rangle=|1,-1\rangle,|1,0\rangle,|1,1\rangle$.
(a) Use the raising and lowering operators $L_{ \pm}$to determine the states $L_{x}|1,-1\rangle, L_{x}|1,0\rangle$, and $L_{x}|1,1\rangle$.
(b) Use your results from part (a) to find the $\ell=1$ eigenstates and eigenvalues of the operator L_{x} in terms of the states $|1,-1\rangle,|1,0\rangle,|1,1\rangle$.
(c) Now consider representations of these states and operators in spherical coordinates, namely $|1,-1\rangle=Y_{1}^{-1},|1,0\rangle=Y_{1}^{0},|1,1\rangle=Y_{1}^{1}$ and

$$
L_{x}=-i \hbar\left(-\sin \phi \frac{\partial}{\partial \theta}-\cos \phi \cot \theta \frac{\partial}{\partial \phi}\right)
$$

Using these representations, verify that the states you found in part (b) are eigenstates of L_{x} by explicit computation.

2 Spin in \hat{y}

(a) Find the eigenvalues and eigenspinors of the spin operator S_{y} in the basis formed by eigenstates of S_{z}. Include a proper normalization for the eigenspinors.
(b) If you measured S_{y} on a particle in the general state

$$
\chi=\binom{a}{b}
$$

(in the basis formed by eigenstates of S_{z}), what values might you get, and with what probabilities? Here a and b can be complex numbers, and you can assume that the state is normalized, ie, $|a|^{2}+|b|^{2}=1$.
(c) If you measured S_{y}^{2} on a particle in the same state as part (b), what outcomes might you get, and with what probabilities?

3 An Electron Spin State

Consider an electron in the spin state

$$
\chi=A\binom{4 i}{3}
$$

(a) Determine the normalization constant A.
(b) Find the expectation values of S_{x}, S_{y}, S_{z}, and S^{2} in this state.
(c) Find the standard deviations $\sigma_{S_{x}}, \sigma_{S_{y}}, \sigma_{S_{z}}$ in this state.

4 Spin One

Construct a matrix representation of the operators S_{x}, S_{y}, S_{z}, and S^{2} for a particle of spin 1, in the basis of eigenstates of S_{z}.

