PHYSICS 115 B WK 1
(1) Inside the box $\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi$
(a)

Separation of variables $\psi(x, y, z)=X(x) Y(y) Z(z)$
Substituting into (1), dividing by ψ, multipging by $\frac{-2 m}{\hbar}$:

In order for this equation to be satisfied for al (x, y, z) each individual term must be equal to a constant. Let's ware $\frac{1}{x} \frac{d^{2} x}{d x^{2}}=-k_{x}^{2} \quad \frac{1}{y} \frac{d^{2} y}{d y^{2}}=-k_{y}^{2} \quad \frac{1}{z} \frac{d^{2} t}{d z^{2}}=-k_{z}^{2}$ with $k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{2 m E}{\hbar} \Rightarrow E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)$
The solution of the X equation in

$$
x(x)=A_{x} \sin k_{x} x+B_{x} \cos k_{x} x
$$

The boundery conditious ore $X(0)=X(0)=0$
This gives $b_{x}=0$ and $k_{x}=\frac{n_{x} \pi}{a} \quad n_{x}$ is integer
Similorly for the y and z equetions -
Solutiou then in $\psi(x, y, z)=C \sin \frac{n_{x} \pi}{a} \sin \frac{n_{y} \pi}{a} \sin \frac{n_{z} \pi}{a}$
Normalization of the werefunction $\int_{0}^{a} d x \int_{0}^{a} d y \int_{0}^{a} d z|\psi|^{2}=1$
gives $C=\left(\frac{2}{a}\right)^{3 / 2}$

$$
E=\frac{\hbar^{2} \pi^{2}}{2 m q^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

(b) Lowbst evergy ell $n^{\prime} s=1 \quad E_{1}=\frac{3 \hbar^{2} \pi^{2}}{2 m e^{2}}$ only 1 combinetor Next lowest $\left(n_{x} n_{y} n_{z}\right)=(2,1,1)$ $\begin{aligned} & \left(n_{x} n_{y}, n_{z}\right)=(2,1,1) \\ & \text { and 3 permutotion }\end{aligned} \quad E_{2}=\frac{6 \pi^{2} \hbar^{2}}{2 m e^{2}}$ degencrey $=3$
3rd lowest $\begin{aligned} &\left(n_{x} n_{y} n_{7}\right)=(2,2,1) \\ & \text { and } 3 \text { pechutetotons }\end{aligned} \quad E_{3}=\frac{9 \pi^{2} \hbar^{2}}{2 m e^{2}}$ degenrony $=3$
Qth looest $\left(n_{1} n_{2} n_{3}\right)=\begin{aligned}(3,1,1) \\ \text { and } \\ \text { pprimutition }\end{aligned} \quad E_{4}=\frac{11 \pi^{2} \hbar^{2}}{2 m e^{2}}$ depacenoy $=3$
Sth lowest $\left(n_{1} n_{2} n_{3}\right)=(2,2,2) \quad E_{5}=\frac{12 \pi^{2} \hbar^{2}}{2 m e^{2}} \quad$ degenaracy $=1$
6th locost $\left(\begin{array}{l}\left.n_{1} n_{n} n_{3}\right) \\ \text { bpermutetions } \\ \text { bi, }, 2,3)\end{array} \quad E_{6}=\frac{14 \pi^{2} \hbar^{2}}{2 m e^{2}} \quad\right.$ depererey $=6$
(2) $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right) \psi=E \psi$

Using the same method as in problem 1, we obtain 3 different equations thad look exeetty like 11 osuibleters, eg

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} X}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} X(x)=E_{X} X(x)
$$

This hes solutions (from loo quarter) $\quad E_{x}=\left(n_{x}+\frac{1}{2}\right) \hbar \omega$
Same for the y and z coordinates, and

$$
E=E_{x}+E_{y}+E_{z}=\left(n_{x}+n_{y}+n_{x}+\frac{3}{2}\right) \hbar \omega=(n+3 / 2) \hbar w
$$

Note: in thus core the n_{x}, n_{y}, n_{z} con be $=0$
(A) The degeneracy of tho shote with eigenenergy $E_{n}=(n+3 / 2) \hbar w$ is equal to the number of ways thad 3 integers can add up to n_{-}For a given n_{x}, in order to have $n_{x}+n_{y}+n_{z}=n$, I can pick $n_{y}=0,1, \ldots, n-n_{x}$ - (Note, once n_{x} : n_{y} or fixed, so in $n_{z}=n-n_{x}-n_{y}$) - So, et a given n_{x} there ore $n-n_{x}+1$ choices of n_{y} - Bot, since n_{x} con be anything from 0 to n, tho degeneracy $d(n)$ will be $d(n)=\sum_{n=0}^{n}\left(n-n_{x}+1\right)=(n+1) \sum_{n_{x}=0}^{n} 1-\sum_{n_{y}=0}^{n} n_{x}$

$$
d(n)=(n+1)^{2}-\frac{1}{2} n(n+1)=\frac{1}{2}(n+1)(n+2)=d(n)
$$

(c) Any lineor combination of degenonte eigenstates in en eigusbete_ So $\frac{1}{\sqrt{3}}\left[\psi_{100}+\psi_{010}+\psi_{001}\right]$ and $\frac{1}{\sqrt{2}}\left[\psi_{100}+i \psi_{001}\right]$ ere eigensteres, whereas $\frac{1}{\sqrt{2}}\left[\psi_{000}+\psi_{010}\right]$ in not
(3) Soure os (2), except now

$$
E=\left(n_{x}+\frac{1}{2}\right) \hbar \omega_{x}+\left(n_{y}+\frac{1}{2}\right) \hbar \omega_{y}+\left(n_{z}+\frac{1}{2}\right) \hbar \omega_{z}
$$

There in no degeneracy excupt in sfecial cases
(4) For $l=0$, there 'n no euguler dependence $V_{0}^{0}(\theta, b)=\sqrt{\frac{1}{4 \pi}}$

The rodial equation becoues $\frac{d^{2} u}{d r^{2}}=-k^{2} u$ with $u(r)=r R(r)$ and $k=\frac{d r^{2}}{\hbar} \quad\left[\begin{array}{l}\text { see equetors } 4.41 \\ \text { and } 4.42 \text { in Ginffith }\end{array}\right]$
The solutionin $u(r)=A e^{i k r}+B e^{-i k x}$ or equivelattly $u(r)=C \sin k r+D \cos k r$

Let's tohe the exponentiol salution

$$
R(r)=\frac{u(r)}{r}=A \frac{e^{i k r}}{r}+\frac{B e^{-i k r}}{r}
$$

Note This is a free porticle - There in no wey to norudize it - You should hooe seen ths last quorter - See Girffths page 56. In audogg to the 1D care, the two solutows corregroud to ingoing and outpoing weon (see Griffiths paye 55)
(5)

$$
\begin{aligned}
& P_{e}^{m}(z)=\left(1-z^{2}\right)^{m / 2} F(z) \\
& \frac{d P_{e}^{m}}{d z}=-m z\left(1-z^{2}\right)^{m / 2-1} F(z)+\left(1-z^{2}\right)^{m / 2} \frac{d F(z)}{d z}
\end{aligned}
$$

Then the ossociated legendre equation in teren of $F(z)$

$$
\begin{aligned}
& \frac{d}{d z}\left[\left(1-z^{2}\right)\left[-m z\left(1-z^{2}\right)^{m-1} F(z)+\left(1-z^{2}\right)^{m / 2} \frac{d F}{d z}\right]\right]+ \\
&+\left[l(l+1)-\frac{m^{2}}{1-z^{2}}\right]\left(1-z^{2}\right)^{m / 2} F(z)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d z} {\left[-m z\left(1-z^{2}\right)^{m / 2} F(z)+\left(1-z^{2}\right)^{m / 2+1} \frac{d F}{d z}\right]+} \\
&+l(l+1)\left(1-z^{2}\right)^{m / 2} F(z)-m^{2}\left(1-z^{2}\right)^{m / 2-1} F(z)=0 \\
&-m\left(1-z^{2}\right)^{m / 2} F(z)+m^{2} z^{2}\left(1-z^{2}\right)^{m / 2-1} F(z)-m z\left(1-z^{2}\right)^{m / 2} \frac{d F}{d z}+ \\
&-2 z\left(\frac{m}{2}+1\right)\left(1-z^{2}\right)^{m / 2} \frac{d F}{d z}+\left(1-z^{2}\right)^{m / 2+1} \frac{d F}{d z^{2}}+ \\
&+l(l+1)\left(1-z^{2}\right)^{m / 2} F(z)-m^{2}\left(1-z^{2}\right)^{m / 2-1} F(z)=0
\end{aligned}
$$

Coucel out a foctor of $\left(1-z^{2}\right)^{m / 2}$

$$
\begin{align*}
& -m F(z)+\frac{m^{2} z^{2}}{1-z^{2}} F(z)-m z \frac{d F}{d z}-m z \frac{d F}{d z}-2 z \frac{d F}{d z}+\left(1-z^{2}\right) \frac{d F}{d z^{2}}+ \\
& \quad+l(l+1) F(z)-\frac{m^{2}}{1-z^{2}} F(z)=0 \\
& \left(1-z^{2}\right) \frac{d^{2} F}{d z^{2}}-2 z(m+1) \frac{d F}{d z}+[l(l+1)-m(m+1)] F(z)=0 \tag{1}
\end{align*}
$$

Now toke Legendse equotion

$$
\begin{gathered}
\frac{d}{d z}\left[\left(1-z^{2}\right) \frac{d P_{e}}{d z}\right]+l(l+1) P_{l}(z)=0 \\
\left(1-z^{2}\right) \frac{d^{2} P_{e}}{d z^{2}}-2 z \frac{d P_{e}}{d z}+l(l+1) P_{l}(z)=0
\end{gathered}
$$

Differentiate this equation m-times - Look et the 3 terms, one by one
First term: $\left(1-z^{2}\right) \frac{d^{2+m} P_{e}}{d z^{2+m}}-2 m z \frac{d^{1+m} P_{l}}{d z^{1+m}}-\frac{2 m(m-1)}{2} \frac{d^{m} P_{e}}{d z^{m}}$
Second Term: $-2 Z \frac{d^{1+m} P_{e}}{d z^{1+m}}-2 m \frac{d^{m} P_{e}}{d z^{m}}$
Third term: $l(\ell+1) \frac{d^{m} P_{l}}{d z^{m}}$
Putting it together

$$
\begin{array}{r}
\left(1-z^{2}\right) \frac{d^{2+m} P_{l}}{d z^{2+m}}-2(m+1) z \frac{d^{1+m} P_{l}}{d z^{1+m}}+[l(l+1)-m(m+1)] \frac{d^{m} P_{l}}{d z^{m}} \\
=0
\end{array}
$$

But this is the same as equation (1) for $F(z)$ So $\frac{d^{m} P_{e}}{d z^{m}}=F_{z}=\left(1-z^{2}\right)^{-m / 2} P_{e}^{m}(z)$

And
The additional factor of $(-1)^{m}$ is convention)
This was done for $m>0$. Because the associated Legendre equation depends on m^{2} not m, thus will also work for $m<0$ provided $m \rightarrow|m|$.

