

 $GRUFFITHS 40.4$

 $GRIFFITHS$ 10.6

V : original potentials

I'V' : gouge transformed potentials

 $\vec{A} = \vec{A} + \vec{\nabla} \lambda$ $V = V - \frac{\partial \lambda}{\partial t}$ Wout $\vec{\nabla}A^{\perp}$ = - Mo $\leqslant \frac{\partial V^{\prime}}{\partial t}$ - Can I find λ $\overline{V}(A+\overline{V}\lambda)=-\mu_0 \epsilon_0 \frac{\partial V}{\partial t}+\mu_0 \epsilon_0 \frac{\partial^2 A}{\partial t^2}$ $-\left(\overrightarrow{V} \overrightarrow{A} + \mu_0 \epsilon_0 \frac{\partial V}{\partial t}\right) = \sum^2 \lambda$ Cell this $F(F,t)$ $\Box \lambda = f(F,t)$ This is like (0.16 (a) which we know how to solve We can diveys pick V=0 by choosing $\lambda(f) = \frac{1}{\sqrt{f}}$ We connot always poick $\vec{A}=0$ because that
Would mean $\vec{B}=curl\vec{A}=0$

GRIFFITHS 10.8 Equetion 10.19 $\frac{\partial A}{\partial t} = \frac{\partial A}{\partial t} + (\vec{V} \cdot \vec{V}) \vec{A}^{\prime} = (\vec{V} \cdot \vec{V}) \vec{A}^{\prime}$ $\frac{dA}{dt} = \frac{1}{2} \left[\left(\vec{V} \cdot \vec{\vec{V}} \right) \left(\vec{\Gamma} \times \vec{B} \right) \right]$ $(xB_y-yB_x)Z$ = - $\frac{1}{2} [V_x [-B_z \hat{y} + B_y \hat{z}] + V_y [B_z \hat{x} - B_x \hat{z}]$ $+V_{2}[-By\hat{x} + B_{x}\hat{y}$ $= -\frac{1}{2} \left[(v_y B_z - v_z B_y) \hat{x} + (-v_x B_z + B_x V_x) \hat{y} \right]$ continued

Consider the second term in the RHS ∇ ($\overrightarrow{\sigma}$, (\overrightarrow{r} second term)
 $\overrightarrow{\nabla}$ ($\overrightarrow{\sigma}$, (\overrightarrow{r} x \overrightarrow{B})) = $\overrightarrow{\nabla}$ (\overrightarrow{r}) $(\vec{\sigma} \cdot (\vec{r} \times \vec{B})) = \vec{V} (\vec{r} \cdot (\vec{B} \times \vec{v}))$ $\frac{1}{2}$
 $\frac{1}{2}$ But for any vector \rightarrow This is then $\vec{B} \times \vec{V}$ 50 RHS is · $95 - 9(6x) = 95 + 9(4x)$ Setting CHS ⁼ RHS we have $\vec{v} \cdot (\vec{r} \cdot (\vec{r} \times \vec{B})) = \vec{v} (\vec{r} \cdot (\vec{B} \times \vec{r}))$

using $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a})$

But for any vector $\vec{v} (\vec{r} \cdot \vec{a}) = \vec{v} (\vec{c} \times \vec{b})$
 \rightarrow This is then $\vec{B} \times \vec{v}$
 \rightarrow This is then $\vec{B} \$ $\frac{dp}{dt} = \frac{q}{z}(\vec{v} \times \vec{B}) = q\vec{E} + \frac{q}{z}(\vec{v} \times \vec{B})$
 $\frac{dp}{dt} = q(\vec{E} + (\vec{v} \times \vec{B}))$