PHYSICS 110 B H OMEWORK 4 GRIFFITHS 9.16 $A e^{i\theta x} + B e^{i\theta x} = Ce^{i\theta x}$ Set $x = 0$ $A + B = C$ $Multiply$ by e^{-iex} $A + Be^{i(b-e)x} = Ce^{i(c-e)x}$ (1) Take imaginary port of (1) $\frac{1}{3}$ sin(b-e)x = C sin(c-e)x Clearly this works if R=b=c - Now essume that this Is not true and see if we can get to a contraddiction $(\text{when } 2, 5, c \text{ are non-leo})$ If $b\neq e$ I can set $x=\frac{\pi}{b-a}$ which gives $0 = C \sin \frac{C - \alpha + 1}{b - \alpha}$ For $C+O$ $5-a$
I must have $G-a$ = N where $N=$ integer Similarly if $c \neq 1$ can set $x = \frac{\pi}{c-a}$ which gives $B \sin \frac{b-a}{c-a} \pi = 0$ For $B+0$ I can set $x = \frac{1}{c-a}$ which gives $B \sin \frac{b-a}{c-a}$
I must have $\frac{b-a}{c-a} = M$ where $M = \frac{b+ca}{c-a}$ The only way that the two circled equations can work in $4N = M = 1$ This means $b-a=c-a$ which gives $b=c$

So I can still here in principle $b = c \pm \alpha$ E quetion (1) then becomes (setting $c = b$) $A + B e^{i(b-a)x} = Ce^{i(b-a)x}$ $A e^{i(e-b)x} = C - B$ The imaginary part in A sin(a-b) $x = 0$ In order for this to work at all values of x , I In order for this to work at all val
must have that $a = b$ and since $b = c$ $\begin{array}{c} 1 \\ 0 \\ -5 \\ 0 \end{array}$ CONTRADDICTION REACHED $GRIFFITUS 9.17$ Will use the sketch from Figure 9.14 in Grittiths And write the R vectors according to http://hep.ucsb.edu/people/claudio/ ph110b-f24/GriffithClarification2.pdf Plane of incidence $k_I = \sin \theta_I \hat{x} + \cos \theta_I \hat{z}$ $k_R = \sin \theta_R \hat{x} - \cos \theta_R \hat{z}$ $\hat{k}_T = \sin \theta_T \hat{x} + \cos \theta_T \hat{z}$ $\sin\theta_R \hat{x} - \cos\theta_R \hat{z}$

Drepping the
$$
e^{i\vec{k}t\vec{r}-\omega t}
$$
 terms, on the surface we have
\n $\vec{E}_{\vec{j}} = E_{\vec{n}x}\hat{i}$ $\vec{B}_{\vec{j}} = \frac{1}{n}(\hat{k}_{\vec{k}} \times \hat{\vec{t}}_{\vec{k}}) = \frac{E_{\vec{n}x}}{n\vec{i}} \begin{bmatrix} \hat{k}_{\vec{n}} & \hat{i} & \hat{i} & \hat{i} \\ 0 & 0 & \omega & \omega \\ 0 & \omega & \omega & \omega \end{bmatrix} = \frac{E_{\vec{n}y}}{n\vec{i}} [\omega s\hat{A}_{\vec{k}} \times \hat{\vec{t}}_{\vec{k}}] = \frac{E_{\vec{n}z}}{n\vec{i}} [\omega s\hat{A}_{\vec{k}} \times \hat{\vec{t}}_{\vec{k}} - \omega s\hat{A}_{\vec$

Using $d = \frac{cos\theta_T}{cos\theta_T}$ $\beta = \frac{\mu_1 \pi_2}{\mu_2 \pi_2}$ $\left(E_{\sigma_{\perp}}-E_{\sigma_{R}}=\alpha\beta E_{\sigma_{\perp}}\right)$ The sum of the two circled equations gives $2\overline{\epsilon}_{o\texttt{r}}$ = $\frac{cos\theta_T}{cos\theta_T}$ $\beta = \frac{\mu_4 \pi_7}{\mu_2 \pi_2}$ $\left(\frac{E_{\sigma\tau} - E_{\sigma R}}{cos\theta_T} - \frac{E_{\sigma\tau} - E_{\sigma R}}{cos\theta_T}\right)$

He two circled equetions gives Substituting into the 1st circled equation $E_{0} + E_{0} = 2 E_{0} + E_{0}$
 $\alpha \beta + 1 E_{0} = 2 - 8\beta - 1 E_{0} + E_{0} = 1 - 8\beta E_{0}$ For the required sketch, we need $\alpha\beta$ - We are also going to use M, = Mr Equation ⁹ . I11 in Griffiths $\alpha = \sqrt{1 - (\frac{n_1}{n_2})^2 sin^2\theta_2} = \frac{\sqrt{1 - sin^2\theta_2} \beta^2}{cos \theta_1}$ Here then are the plots as requested (on the next page)

For the reflection and transmission coefficient we use equations 9.116 and 9.117 $R = \left(\frac{E_{OB}}{E_{OA}}\right)^2$ $R = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta}\right)^2$ the reflection and transm
equotions 9.116 and 9.11
= $\left(\frac{E_{0}R^{2}}{E_{0}T}\right)^{2}$ R = $\left(\frac{1-\alpha\beta}{1+\alpha\beta}\right)^{2}$ ↑ $R + T = \frac{1 + \alpha \beta^{2} - 2\alpha \beta + 4\alpha \beta}{(1 + \alpha \beta)^{2}}$ e reflection and tra
equations 9.116 and
 $\frac{1}{1}$
 $\frac{2946\text{tan}9.116 \text{ sec}}{E_{01}}$
 $\times \beta \left(\frac{E_{01}}{E_{01}}\right)^2 = \frac{400}{(4+1)^2}$
 $= \frac{1600}{(4+1)^2}$
 $= \frac{1600}{(4+1)^2}$
 $= 1600 + 140$ $R + T = 1$ GRIFFITHS 9.21 (a) Eg 9.128 $\vert\!\!\langle\, \vert$ = $\omega\sqrt{\frac{\epsilon}{2}}$ $\sqrt{1+\left(\frac{\epsilon}{\epsilon}\right)^2}$ -1)¹/2 Eq 9.128
 $K = \omega \sqrt{\frac{\epsilon r}{2}} \left[\sqrt{1 + (\frac{\sigma}{\epsilon \omega})^2} - 1 \right]^{1/2}$

For $\sigma \ll \epsilon \omega \sqrt{1 + (\frac{\sigma}{\epsilon \omega})^2} \approx 1 + \frac{1}{2} (\frac{\sigma}{\epsilon \omega})^2$ Thus K = For $\sigma << \epsilon \omega$ $1+(\frac{\sigma}{\epsilon \omega})^2 \sim 1+\frac{1}{2}(\frac{\sigma}{\epsilon \omega})^2$ Thus $k = w \left[\frac{\epsilon_{M}}{2}\left[\frac{1}{2}\left(\frac{\sigma}{\epsilon_{w}}\right)\right] - \frac{w}{2}\left[\frac{\epsilon_{M}}{2}\frac{\sigma}{\epsilon}\right]\right]$
 $k = \frac{1}{2} \sigma \left[\frac{M}{\epsilon}\right]$ $d = \frac{1}{k} \Rightarrow d = \frac{2}{\sigma} \left[\frac{\epsilon}{M}\right]$ For H_{20} $\varepsilon \tilde{=} 80$ ε_{0} (From Wikipedie, et 20°C) $\mu \approx \mu_o$ (not magnetic) $\sigma z 5.510^{-6}$ from google search,

 $C =$ $\frac{2}{5.540}$ $\sqrt{\frac{80.96^{12}}{4\pi 10^{7}}}$ $m \approx 3.640^{5}$ $\sqrt{5.710}$ $d \approx 28km$ (b) If σ 77 EW then looking et equation 9.128 we see that $k \geq k$
So $d = \frac{1}{k}$ and since $k = \frac{2\pi}{\lambda}$. $d = \frac{\lambda}{2\pi}$ In terms of $w, \varepsilon, etc.$
 $k \stackrel{\sim}{=} w \left(\frac{\varepsilon}{\varepsilon} \right)^{2} - 1 \Big)^{2}$ for $\sigma > 2 \varepsilon w$ $R = \sqrt{\frac{w\mu\sigma}{2}}$ $d = \sqrt{\frac{2}{w\mu\sigma}}$ $d \sim 10$ nm $C = \frac{2}{10^{15} 4\pi 10^{-3}}$ m Skin depth extremely short => OPAQUE/ (c) Since $k \approx K$ from equation 9.136
 $\Phi = \tan^{-1} k = \tan^{-1} 1 = 45^\circ$

Equetion 9.139 in the limit ϵ_{ω} >>1 $\frac{B_0}{E_0} = \sqrt{\epsilon \mu \frac{\sigma}{\epsilon \omega}} = \sqrt{\frac{\mu \sigma}{\omega}}$ $= 10^{7}$ ω $\sim 10^{15}$ (in SI units) $For \sigma$ $B_0 = \sqrt{4\pi/6^2 \cdot 10^4}$ $rac{\beta_o}{E_o}$ 10 Compose in Vecuum $\frac{B_o}{E_o}$ $\underline{\mathcal{B}}_{\underline{\mathfrak{o}}}$ 3.40^{-1} .
To