PHYSICS 110 B HOMEWORK 3 $GRIFFTHS 7.57/$ (a) emf ⁼ 457.57
- $\frac{d\phi}{dt}$ = - $\pi r^2 \frac{d\beta}{dt}$ = - $\alpha \pi r^2$ since B = αt
dt dt fortheloop perpendicular to the loop Then in magnitude $\frac{1}{\sqrt{2}}$ regnitude
Penfl
R $T = \alpha T T$ (magnitude) (b) α Area of shaded area \overline{a} \overline{a} the · are of the triangle The of sheded area $\frac{13}{4}$
afthe circle + the
area of the triangle
 $A = \frac{3}{4} \pi r^2 + r^2 = \frac{3\pi + 2}{4} r^2$ $\frac{1}{4}$ The emp through the LPQP) circuit in emf(PQP) ⁼ ph the (PQP) circuit in
 $A dB = \frac{3\pi + 2}{4}ar^2$ in magniture Kirchoft rule for PQP in emf $(PQP) = V + IZ'$

Where R' = resistence between P and $Q = \frac{3}{4}R$ So $V = 2mf(PQP) - IP = 3T + 2Nr^2 - 3Tr^2 = 3R$ $V = \alpha r^2$ 3 π + 2 - 3 π
4 $GRIFTHS 8.15 0nkg a E5$ (a) emf=- $d\theta = \pi a^2 d\beta$ $B = \mu_0 n I_s$ $d\beta = \mu_0 n J_s$ $emf = -\mu_{0} n \pi e^{2} dI_{s}$ But $T_{r} = emf_{R}$ => IFF = pontial de m magnitude (b) I am going to use p os the distance from the Circular loop of radius p with pra $\det^{-1} d\theta = \frac{1}{\theta} 2\pi \rho = -\frac{d\phi}{dt}$ =) $E_{\phi} = -\frac{\mu_{0} a n}{2\rho} \frac{dF_{s}}{dt}$ Note the Ez=0 by symmetry (long solenoid) Also Ep=0 by taking Genss Law over a sphere

centered on the exis-

Changes per unit length on the ring = λ Drift velocity of charges = ∇ AND $T_r = \lambda \nu$ Force in de $dF = E_p \lambda dS = E_p I_r dQ$ Power is $F \cdot v$. So power in de n dp= JF. v $dP = E_{\phi}I_{\tau}d\theta$ Integrating over the ring of radius b $P = 2\pi b E_{\phi} I_{r} = (2\pi b) \mu_{0} a_{n} d_{s}$ $P = \pi \mu_0 e^{2} n \frac{dI}{dt} \mathcal{I}$
But from port (e) $\frac{dI}{dt} = R I$ $P = 1$ Plugging this into the equation for power, $GRIFFTHS 9.2$ $F = A \sin kz \cos k\pi t$ $\frac{\delta^{2}f}{\delta z^{2}} = -Ak^{2}sinkz\cos kvt = -k^{2}f$ $\frac{\delta f}{\delta z}$ = A k coskz coskot

The centers of two circular metal plates forming a parallel plate capacitor, initially charged to voltage V_0 , are connected internally by a straight fine wire of radius a, length L, and conductivity σ .

(a) Calculate the pointing vector (magnitude and direction) at the surface of the wire.

(b) Show that as the capacitor discharges from $V = V_0$ to $V = 0$ the total energy flowing into the wire is $E = \frac{1}{2}CV^2$, where C is the capacitance.

You can ignore the displacement current through the wire, which turns out to be a good approximation as long as the discharge of the capacitor is slow enough.

(a) The cope afor will discharge with a time consteut $2 = RC$
 $V = V_0 e^{-t/\tau}$ and the electric field is $E = \frac{V_0}{L} e^{-t/\tau}$ perpendicular to the plates and constant The current density in the wire to $1 = \sigma E$ So the current through the wive in J= TI e o E

On the surface of the wire the B field in tempential, and In the surface of the w
 $\oint \vec{B}d\vec{e} = \vec{B} 2\pi a = \mu_0 T$ $\mathrm{\mathcal{B}}$ = surface of the wive the B fiel
= $B2\pi a = \mu_0 T$
 $\mu_0 T = \frac{\mu_0 T a \sigma E}{2 \pi a} = \frac{1}{2} \mu_0 a \sigma E$ $\frac{3}{2\pi a}$ $\frac{1}{2\pi a}$ $\frac{2}{\pi a}$ $\frac{2}{\pi a}$ $\frac{2}{\pi a}$ $\frac{2}{\pi}$ into wire In magnitude the Poynting vector in $S=$ $E \cdot B$ $S = \frac{1}{2}a\sigma E^2$ (using the expression for B) S = $\frac{1}{2}$ a o $\frac{V_0^2}{L^2}$ exp (-2⁺/Rc) But R= $\frac{1}{\sqrt{10^2}}$ ζ = $\frac{1}{2}$ e $\frac{1}{2}$ e $\frac{1}{2}$ e $\frac{1}{2}$ (b) To calculate the amount of energy flowing into To calculate the amount of energy flowing in
the wire in dt, I need to multiply S by the surface are of the wire (2TTQL) and by at $dE = (2TRL) - \frac{1}{2}R\sigma E^{2}dt = Tl^{2}d\sigma E^{2}dt$ $\overline{\mathsf{d}}\mathsf{t}$ $S = \frac{1}{2} \rho \frac{\sqrt{6}}{2} k \gamma p \left(-2 \sigma T a^{2}\right)$

To calculate the emount of energy flowing in

the Wire in dt, I need to multing S by the

urface area of the Wire (2TRL) and by dt

dt = (2TRL) $\frac{1}{2} \rho \sigma E^{2} dt = T a^{2} l \sigma E^{2} dt$

d $\begin{array}{lll}\n\frac{\partial E}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \\ \n\frac{\partial E}{\partial t} & -\frac{1}{R} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \\ \n\frac{\partial E}{\partial t} & -\frac{1}{R} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \\ \n\end{array}$ $\frac{dE}{dt} = \frac{1}{R}V_0^2 e^{-2t/Rc}$ Since $R = \frac{L}{\sigma I}a^2$

